Skip to main content

In Search of the Best Iron N4-Macrocyclic Catalysts Adsorbed on Graphite Electrodes and on Multi-walled Carbon Nanotubes for the Oxidation of l-Cysteine by Adjusting the Fe(II)/(I) Formal Potential of the Complex

Abstract

The redox potential of macrocyclic complexes is a very predictive reactivity index for the electrocatalytic activity of these molecules, and it can be easily measured under the same conditions of the catalysis experiments. It reflects directly the activity of a given complex. We have investigated the effect of the Fe(II)/(I) formal potential on the catalytic activity of a series of Fe porphyrins and Fe phthalocyanines for the electrooxidation of l-cysteine, with the complexes directly adsorbed on ordinary pyrolytic graphite or adsorbed on multi-walled carbon nanotubes (MWCNTs) deposited on graphite. A correlation of log j (at constant potential) versus the Fe(II)/(I) formal potential of the catalysts gives a volcano curve for both systems without and with MWCNTs with higher activities in the latter case. Our results clearly show that the highest catalytic activity is achieved in a rather narrow potential window of Fe(II)/(I) formal potentials of N4-macrocyclic complexes. The use of MWCNTs as supporting material for the catalysts does not change the reactivity trends of the Fe complexes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. D. Geraldo, C. Linares, Y.Y. Chen, S. Ureta-Zañartu, J.H. Zagal, Electrochem. Commun. 4, 182 (2002)

    CAS  Article  Google Scholar 

  2. J.H. Zagal, P. Cañete, J. Recio, F. Tasca, C. Linares, Electrochem. Commun. 30, 34 (2013)

    Article  Google Scholar 

  3. J.H. Zagal, M.A. Gulppi, C.A. Caro, G.I. Cardenas-Jirón, Electrochem. Commun. 1, 389 (1999)

    CAS  Article  Google Scholar 

  4. J.H. Zagal, S. Griveau, J.F. Silva, T. Nyokong, F. Bedioui, Coord. Chem. Rev. 254, 2755 (2010)

    CAS  Article  Google Scholar 

  5. F. Bedioui, S. Griveau, T. Nyokong, A.J. Appleby, C.A. Caro, M. Gulppi, G. Ochoa, J.H. Zagal, Phys. Chem. Chem. Phys. 9, 3383 (2007)

    CAS  Article  Google Scholar 

  6. S. Griveau, M. Gulppi, J. Pavez, J.H. Zagal, F. Bedioui, Electroanalysis 15, 779 (2003)

    CAS  Article  Google Scholar 

  7. N. Sehlotho, T. Nyokong, J.H. Zagal, F. Bedioui, Electrochim. Acta 51, 5125 (2006)

    CAS  Article  Google Scholar 

  8. J.H. Zagal, M. Gulppi, M. Isaacs, G. Cardenas-Jirón, M.J. Aguirre, Electrochim. Acta 44, 1349 (1998)

    CAS  Article  Google Scholar 

  9. J.H. Zagal, Coord. Chem. Rev. 119, 89 (1992)

    CAS  Article  Google Scholar 

  10. C. Gutierrez, J.F. Silva, J. Pavez, F. Bedioui, J.H. Zagal, Electrocatalysis 3, 153 (2012)

    CAS  Article  Google Scholar 

  11. F.J. Recio, C. Gutierrez, R. Venegas, C. Linares-Flores, C.A. Caro, J.H. Zagal, Electrochim. Acta (2014). doi:10.1016/j.electacta.2014.04.098

    Google Scholar 

  12. C. Ehli, S. Campidelli, F.G. Brunetti, M. Prato, D.M. Guldi, J. Porphyrins Phthalocyanines 11, 442 (2007)

    CAS  Article  Google Scholar 

  13. R.C.S. Luz, F.S. Damos, A.A. Tanaka, L.T. Kubota, Y. Gushikem, Talanta 76, 1097 (2008)

    CAS  Article  Google Scholar 

  14. B.O. Agboola, A. Mochenko, J. Pillay, K.I. Ozoemena, J. Porphyrins Phthalocyanines 12, 1289 (2008)

    CAS  Article  Google Scholar 

  15. H. Yin, Y. Zhou, J. Xu, S. Ai, L. Cui, L. Zhu, Anal. Chim. Acta. 659, 144 (2010)

    CAS  Article  Google Scholar 

  16. F.C. Moraes, D.I.C. Golinelli, L.H. Mascaro, S.A.S. Machado, Sensors Actuators B 148, 492 (2010)

    CAS  Article  Google Scholar 

  17. W. Orellana, Chem. Phys. Lett. 541, 81 (2010)

    Article  Google Scholar 

  18. C.-Y. Lin, A. Balamurugan, Y.-H. Lai, K.-C. Ho, Talanta 82, 1905 (2010)

    CAS  Article  Google Scholar 

  19. S.L. Edwards, R. Fogel, K. Mtambanengwe, C. Togo, R. Laubscher, J.L. Limson, J. Porphyrins Phthalocyanines 16, 917 (2012)

    CAS  Article  Google Scholar 

  20. M. Coates, T. Nyokong, Electrochim. Acta 17, 158 (2013)

    Article  Google Scholar 

  21. H. Zhao, Y. Chang, C. Liu, J. Porphyrins Phthalocyanines 17, 259 (2013)

    CAS  Article  Google Scholar 

  22. J.H. Weber, D.M. Bush, Inorg. Chem. 4, 472 (1965)

    CAS  Article  Google Scholar 

  23. B. Akkurst, F. Hamuryudan, Dyes Pigments 79, 153 (2008)

    Article  Google Scholar 

  24. C.E. Banks, R.R. Moore, T.J. Davies, R.G. Compton, Chem. Commun. 1804 (2004)

  25. R.R. Moore, C.E. Banks, R. Compton, Anal. Chem. 76, 2677 (2004)

    CAS  Article  Google Scholar 

  26. D. Mimica, F. Bedioui, J.H. Zagal, Electrochim. Acta 48, 323 (2002)

    CAS  Article  Google Scholar 

  27. J.H. Zagal, M. Gulppi, C. Depretz, D. Lelievre, J. Porphyrins Phthalocyanines 2, 355 (1999)

    Article  Google Scholar 

  28. S. Maree, T. Nyokong, J. Electroanal. Chem. 492, 120 (2000)

    CAS  Article  Google Scholar 

  29. L.G. Shaidarova, S.A. Ziganshina, A.V. Gedmina, J.A. Chelnokova, G.K. Budnikov, J. Anal. Chem. 66, 633 (2011)

    CAS  Article  Google Scholar 

  30. S.J. Elliott, C. Leger, H.R. Pershad, J. Hirst, K. Heffron, N. Ginet, F. Blasco, R.A. Rothery, J.H. Weiner, F.A. Armstrong, Biochim. Biophys. Acta 1555, 54 (2002)

    CAS  Article  Google Scholar 

  31. R. Parsons, in Catalysis in electrochemistry. From Fundamentals to Strategies for Fuel Cell Development, eds. E. Santos, W. Schmickler. Wiley Series on Electroctalysis and Electrochemistry A. Wiecowski ed. (Wiley, 2011), p. 1

  32. S. Trasatti, in Part 2: Theory of Electrocatalysis in Handbook of Fuel Cells, Fundamentals Technology and Applications, Volume 2 Electrocatalysis, (Wiley, 2003) 69

  33. M.T.M. Koper, J. Solid State Electrochem. 17, 339 (2013)

    CAS  Article  Google Scholar 

  34. M.T.M. Koper, Chem. Sci. 4, 2710 (2013)

    CAS  Article  Google Scholar 

  35. M.A. Gulppi, F.J. Recio, F. Tasca, G. Ochoa, J.F. Silva, J. Pavez, J.H. Zagal, Electrochim. Acta 126, 37 (2013)

    Article  Google Scholar 

  36. J.K. NØrksov, T. Bligaard, J. Rossmeisl, B. Hvolbaek, F. Abid-Petersen, I. Chorkendorff, C.H. Christensen, Chem. Soc. Rev. 37, 2163 (2008)

    Article  Google Scholar 

  37. B. Yang, R. Burch, C. Hardacre, G. Headdock, P. Hu, ACS Catal. 4, 182 (2013)

    Article  Google Scholar 

  38. J.-M. Savéant, in Elements of Molecular and Biomolecular Electrochemistry. An Electrochemical Approach to Electron Transfer Chemistry, (Wiley Interscience 2, 2006)

Download references

Acknowledgments

This work was supported by Fondecyt Project 1100773 and 1140199, Millennium Nucleus of Molecular Engineering for Catalysis and Biosensors RC120001, Dicyt USACH, and CNRS-CONICYT (PICS France/Chile no. 5738 (2011–2013). C.A.G. thanks CONICYT for the doctoral scholarship and support scholarship (AT-24110138) and to Becas Chile for scholarship abroad F.J.R thanks Fondecyt Postdoctoral Grant 3130538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José H. Zagal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gutierrez, C.A., Silva, J.F., Recio, F.J. et al. In Search of the Best Iron N4-Macrocyclic Catalysts Adsorbed on Graphite Electrodes and on Multi-walled Carbon Nanotubes for the Oxidation of l-Cysteine by Adjusting the Fe(II)/(I) Formal Potential of the Complex. Electrocatalysis 5, 426–437 (2014). https://doi.org/10.1007/s12678-014-0209-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0209-y

Keywords

  • l-Cysteine oxidation
  • Optimizing electrocatalytic activity
  • Volcano plots
  • FeN4 macrocyclics
  • Multi-walled carbon nanotubes