Skip to main content
Log in

Non-precious Metal Oxygen Reduction Reaction Catalysts Synthesized Via Cyanuric Chloride and N-Ethylamine

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Non-precious metal oxygen reduction reaction catalysts were synthesized in this study using novel and cheap nitrogen sources, cyanuric chloride, and N-ethylamine. These materials presented a promising catalytic activity toward the oxygen reduction reaction (ORR) in acid media, which is the most challenging. For the catalyst based on N-ethylamine, the onset potential for ORR is 0.803 V vs reversible hydrogen electrode (RHE) or 0.703 V at 0.1 mA cm−2. The nitrogen source is shown to be extremely important in the final morphology and ORR activity of the catalyst. Steady state ORR polarizations evidenced that the final morphology of the catalysts play a major rule on mass transport in this class of catalysts, with a lamella-like structure being detrimental. Physical characterizations of the catalysts revealed that cyanuric chloride promotes morphology alterations to the carbon support toward a lamella-like structure, while the catalysts synthesized from N-ethylamine retained the nanoparticle structure of the carbon precursor. This catalyst exhibited a Tafel slope of 66 mV per current decade in the lower potential region, with promising four-electron selectivity in a polymer electrolyte fuel cell (PEFC) operational potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 489, 43–51 (2012)

    Article  Google Scholar 

  2. E.N. Gribov, A.Y. Zinovieva, I.N. Voropaev, P.A. Simonov, A.V. Romanenko, A.G. Okunev, Activities of Pt/Sibunit-1562 catalysts in the ORR in PEMFC: effect of Pt content and Pt load at cathode. Int. J. Hydrog Energy 37, 11894–11903 (2012)

    Article  CAS  Google Scholar 

  3. R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe, Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007)

    Article  CAS  Google Scholar 

  4. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007)

    Article  CAS  Google Scholar 

  5. J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315, 220–222 (2007)

    Article  CAS  Google Scholar 

  6. T.R. Ralph, M. Hogarth, Catalysis for low temperature fuel cells part I: the cathode challenges. Platin Met Rev. 46, 3–14 (2002)

    CAS  Google Scholar 

  7. L.Y. Johansson, R. Larsson, Electrochemical reduction of oxygen in sulfuric acid catalyzed by porphyrin-like complexes. J. Mol. Catal. 38, 61–70 (1986)

    Article  CAS  Google Scholar 

  8. S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J. Appl. Electrochem. 19, 19–27 (1989)

    Article  CAS  Google Scholar 

  9. M. Lefèvre, E. Proietti, F. Jaouen, J.P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009)

    Article  Google Scholar 

  10. G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 22, 443–447 (2011)

    Article  Google Scholar 

  11. J.P. Dodelet, The controversial role of the metal in Fe- or Co-based electrocatalysts for the oxygen reduction reaction in acid medium, in Electrocatalysis in fuel cells, ed. by M. Shao, vol. 9 (Springer, London, 2013), pp. 271–338

    Chapter  Google Scholar 

  12. H.A. Gasteiger, N.M. Markovic, Just a dream or future reality? Science 324, 48–49 (2009)

    Article  CAS  Google Scholar 

  13. G. Wu, Z. Chen, K. Artyushkova, F.H. Garzon, P. Zelenay, Polyaniline-derived non-precious catalyst for the polymer electrolyte fuel cell cathode. ECS Trans. 16, 159–170 (2008)

    Article  CAS  Google Scholar 

  14. T.J. Schmidt, H.A. Gasteiger, R.J. Behm, Rotating disk electrode measurements on the CO tolerance of a high‐surface area Pt/vulcan carbon fuel cell catalyst. J. Electrochem. Soc. 146, 1296–1304 (2009)

    Article  Google Scholar 

  15. K. Kinoshita, J.A.S. Bett, Potentiodynamic analysis of surface oxides on carbon blacks. Carbon 11, 403–411 (1973)

    Article  CAS  Google Scholar 

  16. J. Chlistunoff, RRDE and voltammetric study of ORR on pyrolyzed Fe/polyaniline catalyst. On the origins of variable Tafel slopes. J. Phys. Chem. C 115, 6496–6507 (2011)

    Article  CAS  Google Scholar 

  17. T. Onodera, S. Suzuki, T. Mizukami, H. Kanzaki, Enhancement of oxygen reduction activity with addition of carbon support for non-precious metal nitrogen doped carbon catalyst. J. Power. Sources 196, 7994–7999 (2011)

    Article  CAS  Google Scholar 

  18. J. Yan, T. Wei, B. Shao, F.Q. Ma, Z.J. Fan, M.L. Zhang, C. Zheng, Y.C. Shang, W.Z. Qian, F. Wei, Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 48, 1731 (2010)

    Article  CAS  Google Scholar 

  19. S. Zhang, M.S. Miran, A. Ikoma, K. Dokko, M. Watanabe, Protic ionic liquids and salts as versatile carbon precursors. J. Am. Chem. Soc. 136, 1690–1693 (2014)

    Article  CAS  Google Scholar 

  20. G. Wu, K. Artyushkova, M. Ferrandon, A.J. Kropf, D. Myers, P. Zelenay, Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans. 25, 1299–1311 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank FAPESP for financial support, grant #2009/17158-0 (from 2010 to 2011). We also thank Alexandre G. Carmello from Cabot Corp. of Brazil for valuable information on the physical chemistry of Cabot carbon blacks as well as Cabot Corp. of Brazil for providing free samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Lopes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, T., Olivi, P. Non-precious Metal Oxygen Reduction Reaction Catalysts Synthesized Via Cyanuric Chloride and N-Ethylamine. Electrocatalysis 5, 396–401 (2014). https://doi.org/10.1007/s12678-014-0208-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0208-z

Keywords

Navigation