Advertisement

Electrocatalysis

, Volume 5, Issue 4, pp 361–371 | Cite as

High-Performance and Durable Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Membrane Fuel Cells

  • Huaneng Su
  • Cecil Felix
  • Olivia Barron
  • Piotr Bujlo
  • Bernard J. Bladergroen
  • Bruno G. Pollet
  • Sivakumar Pasupathi
Article

Abstract

Membrane electrode assemblies (MEAs) with gas diffusion electrodes (GDEs) fabricated by various catalyst layer (CL) deposit technologies were investigated for the application of high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). The physical properties of the GDEs were characterized by scanning electron microscopy (SEM) and pore size distribution. The electrochemical properties were evaluated and analyzed by polarization curve, Tafel equation, electrochemistry impedance spectroscopy (EIS), and cyclic voltammetry (CV). The results showed that the electrodes prepared by ultrasonic spraying and automatic catalyst spraying under irradiation (ACSUI) methods have superior CL structure and high electrochemistry activity, resulting in high fuel cell performances. Durability tests revealed the feasibility of the electrodes for long-term HT-PEMFC operation.

Keywords

High-temperature proton exchange membrane fuel cell Polybenzimidazole Membrane electrode assembly Gas diffusion electrode Catalyst layer 

Notes

Acknowledgments

This work is supported by Hydrogen and Fuel Cell Technologies RDI Programme (HySA), funded by the Department of Science and Technology in South Africa (Project KP1-S01).

References

  1. 1.
    Y. Oono, A. Sounai, M. Hori, Prolongation of lifetime of high temperature proton exchange membrane fuel cells. J. Power Sources 241, 87–93 (2013)CrossRefGoogle Scholar
  2. 2.
    Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 34, 449–477 (2009)CrossRefGoogle Scholar
  3. 3.
    N.L. Garland, J.P. Kopasz, The United States Department of Energy’s high temperature, low relative humidity membrane program. J. Power Sources 172, 94–99 (2007)CrossRefGoogle Scholar
  4. 4.
    S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35, 9349–9384 (2010)CrossRefGoogle Scholar
  5. 5.
    K.L. Hsueh, E. Gonzalez, S. Srinivasan, D.T. Chin, Effects of phosphoric acid concentration on oxygen reduction kinetics at platinum. J. Electrochem. Soc. 131, 823–828 (1984)CrossRefGoogle Scholar
  6. 6.
    B.G. Pollet, Mission and objectives of the Hydrogen South Africa (HySA) Systems Competence Centre. Fuel Cells Bull. 2013, 10–17 (2013)CrossRefGoogle Scholar
  7. 7.
    B.G. Pollet, S. Pasupathi, G. Swart, K. Mouton, M. Lototskyy, M. Williams, P. Bujlo, S. Ji, B.J. Bladergroen, V. Linkov, Hydrogen South Africa (HySA) Systems Competence Centre: Mission, objectives, technological achievements and breakthroughs. Int. J. Hydrog. Energy 39, 3577–3596 (2014)CrossRefGoogle Scholar
  8. 8.
    G. Alberti, M. Casciola, Composite membranes for medium-temperature PEM fuel cells. Annu. Rev. Mater. Res. 33, 129–154 (2003)CrossRefGoogle Scholar
  9. 9.
    J.A. Asensio, P. Gómez-Romero, Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature poly-mer electrolyte membrane fuel cells. Fuel Cells 5, 336–343 (2005)CrossRefGoogle Scholar
  10. 10.
    J.A. Asensio, E.M. Sanchez, P. Gomez-Romero, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem. Soc. Rev. 39, 3210–3239 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Bose, T. Kuila, T.X.H. Nguyen, N.H. Kim, K.-t. Lau, J.H. Lee, Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog. Polym. Sci. 36, 813–843 (2011)CrossRefGoogle Scholar
  12. 12.
    Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, PBI-based polymer membranes for high temperature fuel cells—preparation. characterization and fuel cell demonstration. Fuel Cells 4, 147–159 (2004)CrossRefGoogle Scholar
  13. 13.
    J. Patric, Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr. Opin. Colloid Interface Sci. 8, 96–102 (2003)CrossRefGoogle Scholar
  14. 14.
    A.S. Arico, A. Stassi, I. Gatto, G. Monforte, E. Passalacqua, V. Antonucci, Surface properties of Pt and PtCo electrocatalysts and their influence on the performance and degradation of high-temperature polymer electrolyte fuel cells. J. Phys. Chem. C 114, 15823–15836 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Lobato, P. Cañizares, D. Ubeda, F.J. Pinar, M.A. Rodrigo, Testing PtRu/CNF catalysts for a high temperature polybenzimidazole-based direct ethanol fuel cell. Effect of metal content. Appl. Catal. B 106, 174–180 (2011)Google Scholar
  16. 16.
    M. Mamlouk, K. Scott, An investigation of Pt alloy oxygen reduction catalysts in phosphoric acid doped PBI fuel cells. J. Power Sources 196, 1084–1089 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Parrondo, F. Mijangos, B. Rambabu, Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell. J. Power Sources 195, 3977–3983 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Lobato, P. Canizares, M.A. Rodrigo, D. Ubeda, F.J. Pinar, J.J. Linares, Optimisation of the microporous layer for a polybenzimidazole-based high temperature PEMFC—effect of carbon content. Fuel Cells 10, 770–777 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Mamlouk, K. Scott, The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell. Int. J. Hydrog. Energy 35, 784–793 (2010)CrossRefGoogle Scholar
  20. 20.
    P. Mazúr, J. Soukup, M. Paidar, K. Bouzek, Gas diffusion electrodes for high temperature PEM-type fuel cells: role of a polymer binder and method of the catalyst layer deposition. J. Appl. Electrochem. 41, 1013–1019 (2011)CrossRefGoogle Scholar
  21. 21.
    A.D. Modestov, M.R. Tarasevich, V.Y. Filimonov, A.Y. Leykin, Influence of catalyst layer binder on catalyst utilization and performance of fuel cell with polybenzimidazole-H3PO4 membrane. J. Electrochem. Soc. 156, B650–B656 (2009)CrossRefGoogle Scholar
  22. 22.
    C. Pan, Q. Li, J.O. Jensen, R. He, L.N. Cleemann, M.S. Nilsson, N.J. Bjerrum, Q. Zeng, Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells. J. Power Sources 172, 278–286 (2007)CrossRefGoogle Scholar
  23. 23.
    J.O. Park, K. Kwon, M.D. Cho, S.G. Hong, T.Y. Kim, D.Y. Yoo, Role of binders in high temperature PEMFC electrode. J. Electrochem. Soc. 158, B675–B681 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Su, T.-C. Jao, S. Pasupathi, B.J. Bladergroen, V. Linkov, B.G. Pollet, A novel dual catalyst layer structured gas diffusion electrode for enhanced performance of high temperature proton exchange membrane fuel cell. J. Power Sources 246, 63–67 (2014)CrossRefGoogle Scholar
  25. 25.
    H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B.G. Pollet, Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: evaluation of polymer binders in catalyst layer. Int. J. Hydrog. Energy 38, 11370–11378 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Su, S. Pasupathi, B.J. Bladergroen, V. Linkov, B.G. Pollet, Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique. J. Power Sources 242, 510–519 (2013)CrossRefGoogle Scholar
  27. 27.
    H. Su, H. Liang, B.J. Bladergroen, V. Linkov, B.G. Pollet, S. Pasupathi, Effect of platinum distribution in dual catalyst layer structured gas diffusion electrode on the performance of high temperature PEMFC. J. Electrochem. Soc. 161, F506–F512 (2014)CrossRefGoogle Scholar
  28. 28.
    H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B.G. Pollet, Performance investigation of membrane electrode assemblies for high temperature proton exchange membrane fuel cell. J. Power Energy Eng. 1, 95–100 (2013)CrossRefGoogle Scholar
  29. 29.
    C. Felix, T.-C. Jao, S. Pasupathi, B.G. Pollet, Optimisation of electrophoretic deposition parameters for gas diffusion electrodes in high temperature polymer electrolyte membrane fuel cells. J. Power Sources 243, 40–47 (2013)CrossRefGoogle Scholar
  30. 30.
    G.-B. Jung, C.-C. Tseng, C.-C. Yeh, C.-Y. Lin, Membrane electrode assemblies doped with H3PO4 for high temperature proton exchange membrane fuel cells. Int. J. Hydrog. Energy 37, 13645–13651 (2012)CrossRefGoogle Scholar
  31. 31.
    B. Millington, V. Whipple, B.G. Pollet, A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique. J. Power Sources 196, 8500–8508 (2011)CrossRefGoogle Scholar
  32. 32.
    O.E. Kongstein, T. Berning, B. Børresen, F. Seland, R. Tunold, Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes. Energy 32, 418–422 (2007)CrossRefGoogle Scholar
  33. 33.
    D.S. Hwang, C.H. Park, S.C. Yi, Y.M. Lee, Optimal catalyst layer structure of polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 36, 9876–9885 (2011)CrossRefGoogle Scholar
  34. 34.
    H.-K. Lee, J.-H. Park, D.-Y. Kim, T.-H. Lee, A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC. J. Power Sources 131, 200–206 (2004)CrossRefGoogle Scholar
  35. 35.
    J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, F.J. Pinar, Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC. Int. J. Hydrog. Energy 35, 1347–1355 (2010)CrossRefGoogle Scholar
  36. 36.
    J. Lobato, M.A. Rodrigo, J.J. Linares, K. Scott, Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells. J. Power Sources 157, 284–292 (2006)CrossRefGoogle Scholar
  37. 37.
    F. Seland, T. Berning, B. Børresen, R. Tunold, Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte. J. Power Sources 160, 27–36 (2006)CrossRefGoogle Scholar
  38. 38.
    J.-H. Kim, H.-J. Kim, T.-H. Lim, H.-I. Lee, Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer. J. Power Sources 170, 275–280 (2007)CrossRefGoogle Scholar
  39. 39.
    A.-L. Ong, G.-B. Jung, C.-C. Wu, W.-M. Yan, Single-step fabrication of ABPBI-based GDE and study of its MEA characteristics for high-temperature PEM fuel cells. Int. J. Hydrog. Energy 35, 7866–7873 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Mamlouk, K. Scott, Phosphoric acid-doped electrodes for a PBI polymer membrane fuel cell. Int. J. Energy Res. 35, 507–519 (2011)CrossRefGoogle Scholar
  41. 41.
    C. Wannek, W. Lehnert, J. Mergel, Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers. J. Power Sources 192, 258–266 (2009)CrossRefGoogle Scholar
  42. 42.
    S. Matar, A. Higier, H. Liu, The effects of excess phosphoric acid in a polybenzimidazole-based high temperature proton exchange membrane fuel cell. J. Power Sources 195, 181–184 (2010)CrossRefGoogle Scholar
  43. 43.
    J. Zhang, Y. Tang, C. Song, J. Zhang, Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 °C. J. Power Sources 172, 163–171 (2007)CrossRefGoogle Scholar
  44. 44.
    M.S. Saha, D. Malevich, E. Halliop, J.G. Pharoah, B.A. Peppley, K. Karan, Electrochemical activity and catalyst utilization of low Pt and thickness controlled membrane electrode assemblies. J. Electrochem. Soc. 158, B562–B567 (2011)CrossRefGoogle Scholar
  45. 45.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005)CrossRefGoogle Scholar
  46. 46.
    J.-R. Kim, J.S. Yi, T.-W. Song, Investigation of degradation mechanisms of a high-temperature polymer-electrolyte-membrane fuel cell stack by electrochemical impedance spectroscopy. J. Power Sources 220, 54–64 (2012)CrossRefGoogle Scholar
  47. 47.
    X.Z. Yuan, H.J. Wang, J.C. Sun, J.J. Zhang, AC impedance technique in PEM fuel cell diagnosis—a review. Int. J. Hydrog. Energy 32, 4365–4380 (2007)CrossRefGoogle Scholar
  48. 48.
    T.J. Schmidt, J. Baurmeister, Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. J. Power Sources 176, 428–434 (2008)CrossRefGoogle Scholar
  49. 49.
    Y. Oono, A. Sounai, M. Hori, Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells. J. Power Sources 210, 366–373 (2012)CrossRefGoogle Scholar
  50. 50.
    Y. Oono, T. Fukuda, A. Sounai, M. Hori, Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells. J. Power Sources 195, 1007–1014 (2010)CrossRefGoogle Scholar
  51. 51.
    S. Yu, L. Xiao, B.C. Benicewicz, Durability studies of PBI-based high temperature PEMFCs. Fuel Cells 8, 165–174 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Huaneng Su
    • 1
  • Cecil Felix
    • 1
  • Olivia Barron
    • 1
  • Piotr Bujlo
    • 1
  • Bernard J. Bladergroen
    • 1
  • Bruno G. Pollet
    • 1
  • Sivakumar Pasupathi
    • 1
  1. 1.HySA Systems Competence Centre, South African Institute for Advanced Materials ChemistryUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations