Electrooxidation of NaBH4 in Alkaline Medium on Well-defined Pt Nanoparticles Deposited onto Flat Glassy Carbon Substrate: Evaluation of the Effects of Pt Nanoparticle Size, Inter-Particle Distance, and Loading

Abstract

Well-defined Pt nanoparticles deposited at smooth glassy-carbon (GC) surfaces were elaborated and thoroughly characterized. Using such model Pt/GC surfaces enabled demonstrating that the borohydride oxidation reaction (BOR) is subjected to nanoparticle size and ensemble effects: larger particle diameter and shorter inter-particle distance yield faster BOR kinetics and larger faradaic efficiency. As previously noted for smooth Pt (and Au) surfaces, the Pt/GC nanoparticles are self-poisoned in the course of the BOR; surprisingly, such poisoning also proceeds in open-circuit conditions. The adsorbed intermediates formed in the course of the step-wise electrooxidation and heterogeneous hydrolysis processes are most likely yielding the Pt surface blocking below E = 0.6 V vs. Reversible Hydrogen Electrode (RHE). This blocking is, however, reversible, since incursions to potentials E > 0.6 V vs. RHE enable cleaning the Pt surface. Finally, comparing smooth Pt/GC surfaces to volumic active layers composed of Pt/carbon black (CB) demonstrates that the intrinsic activity/faradaic efficiency of the Pt nanoparticles may strongly be biased by mass-transport effects within the active layer. Larger (apparent) faradaic efficiency and lower BOR onset potential are observed for thick active layers, whereas the specific activity in these is artificially lowered following effectiveness factor well below unity in that case. As a result, the determination of the intrinsic activity of an electrocatalytic material should only be done with tremendous care and with a perfect control of the electrode/surface morphology, texture and structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001)

    Article  CAS  Google Scholar 

  2. 2.

    S.J. Visco, E. Nimon, L.C. De Jonghe, Secondary Batteries—metal-air Systems | Lithium-Air, in Encyclopedia of Electrochemical Power Sources, ed. by J. Garche (Elsevier, Amsterdam, 2009), pp. 376–383

    Google Scholar 

  3. 3.

    W. Vielstich, A. Lamm, H.A. Gasteiger, Handbook of Fuel Cells (Wiley, Chichester, 2003)

    Google Scholar 

  4. 4.

    H.A. Gasteiger, W. Vielstich, H. Yokokawa, Handbook of Fuel Cells (Wiley, Chichester, 2009)

    Google Scholar 

  5. 5.

    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9 (2005)

    Article  CAS  Google Scholar 

  6. 6.

    E. Guilminot, A. Corcella, M. Chatenet, F. Maillard, F. Charlot, G. Berthome, C. Iojoiu, J.-Y. Sanchez, E. Rossinot, E. Claude, Membrane and active layer degradation upon PEMFC steady-state operation. J. Electrochem. Soc. 154, B1106 (2007)

    Article  CAS  Google Scholar 

  7. 7.

    L. Dubau, F. Maillard, M. Chatenet, J. André, E. Rossinot, Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation. Electrochim. Acta 56, 776 (2010)

    Article  CAS  Google Scholar 

  8. 8.

    L. Dubau, F. Maillard, M. Chatenet, L. Guetaz, J. Andre, E. Rossinot, Durability of Pt3Co/C cathodes in a 16 cell PEMFC stack: macro/microstructural changes and degradation mechanisms. J. Electrochem. Soc. 157, B1887 (2010)

    Article  CAS  Google Scholar 

  9. 9.

    F. Maillard, L. Dubau, J. Durst, M. Chatenet, J. André, E. Rossinot, Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: direct evidence of bulk Co segregation to the surface. Electrochem. Commun. 12, 1161 (2010)

    Article  CAS  Google Scholar 

  10. 10.

    L. Dubau, M. Lopez-Haro, L. Castanheira, J. Durst, M. Chatenet, P. Bayle-Guillemaud, L. Guétaz, N. Caqué, E. Rossinot, F. Maillard, Probing the structure, the composition and the ORR activity of Pt3Co/C nanocrystallites during a 3422 h PEMFC aging test, Appl. Catal. B: Environmental, in press (2013)

  11. 11.

    J. Durst, A. Lamibrac, F. Charlot, J. Dillet, L.F. Castanheira, G. Maranzana, L. Dubau, F. Maillard, M. Chatenet, O. Lottin, Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: inlet vs. outlet and channel vs. land. Appl. Catal. B Environ. 138-139, 416 (2013)

    Article  CAS  Google Scholar 

  12. 12.

    S.C. Amendola, P. Onnerud, M.T. Kelly, P.J. Petillo, S.L. Sharp-Goldman, M. Binder, A novel high power density borohydride-air cell. J. Power Sources 84, 130 (1999)

    Article  CAS  Google Scholar 

  13. 13.

    U.B. Demirci, Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J. Power Sources 169, 239 (2007)

    Article  CAS  Google Scholar 

  14. 14.

    M.E. Indig, R.N. Snyder, Sodium borohydride, an interesting anodic fuel. 1. J. Electrochem. Soc. 109, 1104 (1962)

    Article  CAS  Google Scholar 

  15. 15.

    E. Gyenge, Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim. Acta 49, 965 (2004)

    Article  CAS  Google Scholar 

  16. 16.

    M. Chatenet, F. Micoud, I. Roche, E. Chainet, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte—Part I. BH4- electro-oxidation on Au and Ag catalysts. Electrochim. Acta 51, 5459 (2006)

    Article  CAS  Google Scholar 

  17. 17.

    M. Chatenet, F. Micoud, I. Roche, E. Chainet, J. Vondrak, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte—Part II. O-2 reduction. Electrochim. Acta 51, 5452 (2006)

    Article  CAS  Google Scholar 

  18. 18.

    E. Gyenge, M. Atwan, D. Northwood, Electrocatalysis of borohydride oxidation on colloidal Pt and Pt-alloys (Pt-Ir, Pt-Ni, and Pt-Au) and application for direct borohydride fuel cell anodes. J. Electrochem. Soc. 153, A150 (2006)

    Article  CAS  Google Scholar 

  19. 19.

    M.H. Atwan, D.O. Northwood, E.L. Gyenge, Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells. Int. J. Hydrog. Energy 32, 3116 (2007)

    Article  CAS  Google Scholar 

  20. 20.

    B. Molina Concha, M. Chatenet, Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt - Ag electrodes in basic media. Part I: bulk electrodes. Electrochim. Acta 54, 6119 (2009)

    Article  CAS  Google Scholar 

  21. 21.

    B. Molina Concha, M. Chatenet, Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt - Ag electrodes in basic media. Part II: carbon supported nanoparticles. Electrochim. Acta 54, 6130 (2009)

    Article  CAS  Google Scholar 

  22. 22.

    F. Pei, Y. Wang, X.Y. Wang, P.Y. He, Q.Q. Chen, X.Y. Wang, H. Wang, L.H. Yi, J. Guo, Performance of supported Au-Co alloy as the anode catalyst of direct borohydride-hydrogen peroxide fuel cell. Int. J. Hydrog. Energy 35, 8136 (2010)

    Article  CAS  Google Scholar 

  23. 23.

    M. Simões, S. Baranton, C. Coutanceau, Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4. Electrochim. Acta 56, 580 (2010)

    Article  CAS  Google Scholar 

  24. 24.

    P.Y. He, X.Y. Wang, P. Fu, H. Wang, L.H. Yi, The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell. Int. J. Hydrog. Energy 36, 8857 (2011)

    Article  CAS  Google Scholar 

  25. 25.

    L.H. Yi, Y.F. Song, X. Liu, X.Y. Wang, G.S. Zou, P.Y. He, W. Yi, High activity of Au-Cu/C electrocatalyst as anodic catalyst for direct borohydride-hydrogen peroxide fuel cell. Int. J. Hydrog. Energy 36, 15775 (2011)

    Article  CAS  Google Scholar 

  26. 26.

    A.C. Garcia, F.H.B. Lima, E.A. Ticianelli, M. Chatenet, Carbon-supported nickel-doped manganese oxides as electrocatalysts for the oxygen reduction reaction in the presence of sodium borohydride. J. Power Sources 222, 305 (2013)

    Article  CAS  Google Scholar 

  27. 27.

    M. Chatenet, B. Molina-Concha, J.-P. Diard, First insights into the borohydride oxidation reaction mechanism on gold by electrochemical impedance spectroscopy. Electrochim. Acta 54, 1687 (2009)

    Article  CAS  Google Scholar 

  28. 28.

    B. Molina Concha, M. Chatenet, C. Coutanceau, F. Hahn, In situ infrared (FTIR) study of the borohydride oxidation reaction. Electrochem. Commun. 11, 223 (2009)

    Article  CAS  Google Scholar 

  29. 29.

    B. Molina Concha, M. Chatenet, F. Maillard, E.A. Ticianelli, F.H.B. Lima, R.B. de Lima, In situ infrared (FTIR) study of the mechanism of the borohydride oxidation reaction. Phys. Chem. Chem. Phys. 12, 11507 (2010)

    Article  CAS  Google Scholar 

  30. 30.

    B. Molina Concha, M. Chatenet, E.A. Ticianelli, F.H.B. Lima, In situ infrared (FTIR) study of the mechanism of the borohydride oxidation reaction on smooth Pt electrode. J. Phys. Chem. C 115, 12439 (2011)

    Article  CAS  Google Scholar 

  31. 31.

    M.B. Molina Concha, K.S. Freitas, A.M. Pasqualeti, M. Chatenet, F.H.B. Lima, E.A. Ticianelli, Boston, MA, 2011

  32. 32.

    F.H.B. Lima, A.M. Pasqualeti, M.B. Molina Concha, M. Chatenet, E.A. Ticianelli, Borohydride electrooxidation on Au and Pt electrodes. Electrochim. Acta 84, 202 (2012)

    Article  CAS  Google Scholar 

  33. 33.

    K.S. Freitas, B.M. Concha, E.A. Ticianelli, M. Chatenet, Borohydride oxidation on Pt-based electrodes: evidence of residence time effect on the reaction onset and faradaic efficiency. ECS Trans. 33, 1693 (2010)

    Article  CAS  Google Scholar 

  34. 34.

    K.S. Freitas, B.M. Concha, E.A. Ticianelli, M. Chatenet, Mass transport effects in the borohydride oxidation reaction—influence of the residence time on the reaction onset and faradaic efficiency. Catal. Today 170, 110 (2011)

    Article  CAS  Google Scholar 

  35. 35.

    M. Chatenet, F.H.B. Lima, E.A. Ticianelli, Gold is not a Faradaic-efficient borohydride oxidation electrocatalyst: an online electrochemical mass spectrometry study. J. Electrochem. Soc. 157, B697 (2010)

    Article  CAS  Google Scholar 

  36. 36.

    D.A. Finkelstein, N.D. Mota, J.L. Cohen, H.D. Abruña, Rotating Disk Electrode (RDE) Investigation of BH4 - and BH3OH- electro-oxidation at Pt and Au: implications for BH4 - fuel cells. J. Phys. Chem. C 113, 19700 (2009)

    Article  CAS  Google Scholar 

  37. 37.

    P.S. Ruvinskiy, A. Bonnefont, C. Pham-Huu, E.R. Savinova, Using ordered carbon nanomaterials for shedding light on the mechanism of the cathodic oxygen reduction reaction. Langmuir 27, 9018 (2011)

    Article  CAS  Google Scholar 

  38. 38.

    A. Schneider, L. Colmenares, Y.E. Seidel, Z. Jusys, B. Wickman, B. Kasemo, R.J. Behm, Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Phys. Chem. Chem. Phys. 10, 1931 (2008)

    Article  CAS  Google Scholar 

  39. 39.

    P.S. Ruvinskiy, A. Bonnefont, M. Bayati, E.R. Savinova, Mass transport effects in CO bulk electrooxidation on Pt nanoparticles supported on vertically aligned carbon nanofilaments. Phys. Chem. Chem. Phys. 12, 15207 (2010)

    Article  CAS  Google Scholar 

  40. 40.

    O. Antoine, Y. Bultel, R. Durand, P. Ozil, Electrocatalysis, diffusion and ohmic drop in PEMFC: particle size and spatial discrete distribution effects. Electrochim. Acta 43, 3681 (1998)

    Article  CAS  Google Scholar 

  41. 41.

    Y. Takasu, N. Ohashi, X.G. Zhang, Y. Murakami, H. Minagawa, S. Sato, K. Yahikozawa, Effects of platinum particles on the electroreduction of oxygen. Electrochim. Acta 41, 2595 (1996)

    Article  CAS  Google Scholar 

  42. 42.

    F. Maillard, S. Pronkin, E.R. Savinova, Size effects in electrocatalysis of fuel cells reactions on supported metal nanoparticles, in: M.T.M. Koper (Ed.) Fuel cell catalysis: a surface science approach, Wiley, New York, 2009, pp. in press

  43. 43.

    M. Watanabe, H. Sei, P. Stonehart, The influence of platinum crystallite size on the electroreduction of oxygen. J. Electroanal. Chem. 261, 375 (1989)

    Article  CAS  Google Scholar 

  44. 44.

    O.V. Cherstiouk, P.A. Simonov, E.R. Savinova, Model approach to evaluate particle size effects in electrocatalysis: preparation and properties of Pt nanoparticles supported on GC and HOPG. Electrochim. Acta 48, 3851 (2003)

    Article  CAS  Google Scholar 

  45. 45.

    O.V. Cherstiouk, P.A. Simonov, V.I. Zaikovskii, E.R. Savinova, CO monolayer oxidation at Pt nanoparticles supported on glassy carbon electrodes. J. Electroanal. Chem. 554, 241 (2003)

    Article  CAS  Google Scholar 

  46. 46.

    N. Job, M. Chatenet, S. Berthon-Fabry, S. Hermans, F. Maillard, Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: avoid chloride-based Pt salts! J. Power Sources 240, 294 (2013)

    Article  CAS  Google Scholar 

  47. 47.

    V. Stamenkovic, N.M. Markovic, P.N. Ross, Structure-relationships in electrocatalysis: oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J. Electroanal. Chem. 500, 44 (2001)

    Article  CAS  Google Scholar 

  48. 48.

    J.O.M. Bockris, S.U.M. Khan, Surface electrochemistry—a molecular level approach (Plenum Press, New York, 1993)

    Google Scholar 

  49. 49.

    F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf, U. Stimming, Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 7, 385 (2005)

    Article  CAS  Google Scholar 

  50. 50.

    F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss. 125, 357 (2004)

    Article  CAS  Google Scholar 

  51. 51.

    E. Guilminot, F. Fischer, M. Chatenet, A. Rigacci, S. Berthon-Fabry, P. Achard, E. Chainet, Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: Electrochemical characterization. J. Power Sources 166, 104 (2007)

    Article  CAS  Google Scholar 

  52. 52.

    E. Guilminot, R. Gavillon, M. Chatenet, S. Berthon-Fabry, A. Rigacci, T. Budtova, New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis. J. Power Sources 185, 717 (2008)

    Article  CAS  Google Scholar 

  53. 53.

    J. Rooke, C.D. Passos, M. Chatenet, R. Sescousse, T. Budtova, S. Berthon-Fabry, R. Mosdale, F. Maillard, Synthesis and properties of platinum nanocatalyst supported on cellulose-based carbon aerogel for applications in PEMFCs. J. Electrochem. Soc. 158, B779 (2011)

    Article  CAS  Google Scholar 

  54. 54.

    F. Maillard, E.R. Savinova, U. Stimming, CO Monolayer Oxidation on Pt nanoparticles: further insights into the particle size effects. J. Electroanal. Chem. 599, 221 (2007)

    Article  CAS  Google Scholar 

  55. 55.

    M. Chatenet, L. Génies-Bultel, M. Aurousseau, R. Durand, F. Andolfatto, Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide—comparison with platinum. J. Appl. Electrochem. 32, 1131 (2002)

    Article  CAS  Google Scholar 

  56. 56.

    M. Chatenet, M. Aurousseau, R. Durand, F. Andolfatto, Silver-platinum bimetallic catalysts for oxygen cathodes in chlor-alkali electrolysis—comparison with pure platinum. J. Electrochem. Soc. 150, D47 (2003)

    Article  CAS  Google Scholar 

  57. 57.

    G. Parrour, M. Chatenet, J.-P. Diard, Electrochemical impedance spectroscopy study of borohydride oxidation reaction on gold—towards a EE MECHANISM. Electrochim. Acta 55, 9113 (2010)

    Article  CAS  Google Scholar 

  58. 58.

    D.A. Finkelstein, C.D. Letcher, D.J. Jones, L.M. Sandberg, D.J. Watts, H.D. Abruña, Self-poisoning during BH4-oxidation at Pt and Au, and in situ poison removal procedures for BH4-fuel cells. J. Phys. Chem. C 117, 1571 (2013)

    Article  CAS  Google Scholar 

  59. 59.

    P.-Y. Olu, B. Gilles, N. Job, M. Chatenet, Influence of the surface morphology of smooth platinum electrodes for the sodium borohydride oxidation reaction, Electrochem. Commun., in press (2014)

  60. 60.

    G. Rostamikia, M.J. Janik, First principles mechanistic study of borohydride oxidation over the Pt(1 1 1) surface. Electrochim. Acta 55, 1175 (2010)

    Article  CAS  Google Scholar 

  61. 61.

    P.S. Ruvinskiy, A. Bonnefont, M. Houllé, C. Pham-Huu, E.R. Savinova, Preparation, testing and modeling of three-dimensionally ordered catalytic layers for electrocatalysis of fuel cell reactions. Electrochim. Acta 55, 3245 (2010)

    Article  CAS  Google Scholar 

  62. 62.

    J.P. Elder, A.H. Hickling, Anodic behaviour of the borohydride ion. Trans. Faraday Soc. 58, 1852 (1962)

    Article  CAS  Google Scholar 

  63. 63.

    J.H. Morris, H.J. Gysling, D. Reed, Electrochemistry of boron compounds. Chem. Rev. 85, 51 (1985)

    Article  CAS  Google Scholar 

  64. 64.

    G. Rostamikia, M.J. Janik, Direct borohydride oxidation: mechanism determination and design of alloy catalysts guided by density functional theory. Energy Environ. Sci. 3, 1262 (2010)

    Article  CAS  Google Scholar 

  65. 65.

    J.A. Gardiner, J.W. Collat, Kinetics of the stepwise hydrolysis of tetrahydroborate ion. J. Am. Chem. Soc. 87, 1692 (1965)

    Article  CAS  Google Scholar 

  66. 66.

    E. Thiele, Relation between catalytic activity and size of particle. Ind. Eng. Chem. 31, 916 (1939)

    Article  CAS  Google Scholar 

  67. 67.

    A. Wheeler, Reaction rate and selectivity in catalyst pores. Adv. Catal. 3, 249 (1951)

    Article  Google Scholar 

  68. 68.

    J.A.S. Bett, K. Kinoshita, P. Stonehart, Crystallite growth of platinum dispersed on graphitized carbon-black. 2. Effect of liquid environment. J. Catal. 41, 124 (1976)

    Article  CAS  Google Scholar 

  69. 69.

    F. Gloaguen, F. Andolfatto, R. Durand, P. Ozil, Kinetic-study of electrochemical reactions at catalyst-recast ionomer interfaces from thin active layer modeling. J. Appl. Electrochem. 24, 863 (1994)

    Article  CAS  Google Scholar 

  70. 70.

    F. Gloaguen, R. Durand, Simulations of PEFC cathodes: an effectiveness factor approach. J. Appl. Electrochem. 27, 1029 (1997)

    Article  CAS  Google Scholar 

  71. 71.

    M. Chatenet, L. Dubau, N. Job, F. Maillard, The (electro)catalyst | membrane interface in the proton exchange membrane fuel cell: similarities and differences with non-electrochemical Catalytic Membrane Reactors. Catal. Today 156, 76 (2010)

    Article  CAS  Google Scholar 

  72. 72.

    L. Genies, R. Faure, R. Durand, Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim. Acta 44, 1317 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PYO greatly acknowledges IDS FunMat for the financial support of his PhD thesis (project 2012-10LF). CRB thanks FAPESP for having funded his sandwich internship within the CAPES/BRAFITEC project N07-R10-05 (CDEFI). MC thanks Frédéric Maillard and Fabio H. B. Lima for fruitful discussion, Walter Felicori Ambrosio for having initiated the experiments on the Pt/GC materials, and Arnaud Mantoux (SIMAP) for his help in the synthesis of the Pt/GC nanoparticles. MC also acknowledges the French University Institute (IUF) for its support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marian Chatenet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Olu, PY., Barros, C.R., Job, N. et al. Electrooxidation of NaBH4 in Alkaline Medium on Well-defined Pt Nanoparticles Deposited onto Flat Glassy Carbon Substrate: Evaluation of the Effects of Pt Nanoparticle Size, Inter-Particle Distance, and Loading. Electrocatalysis 5, 288–300 (2014). https://doi.org/10.1007/s12678-014-0195-0

Download citation

Keywords

  • Well-defined Pt/glassy-carbon nanoparticles
  • Borohydride oxidation reaction (BOR)
  • Particle-size effect
  • Inter-particle distance effect
  • Pt loading effect