Advertisement

Electrocatalysis

, Volume 5, Issue 3, pp 288–300 | Cite as

Electrooxidation of NaBH4 in Alkaline Medium on Well-defined Pt Nanoparticles Deposited onto Flat Glassy Carbon Substrate: Evaluation of the Effects of Pt Nanoparticle Size, Inter-Particle Distance, and Loading

  • Pierre-Yves Olu
  • Caio Ribeiro Barros
  • Nathalie Job
  • Marian ChatenetEmail author
Article

Abstract

Well-defined Pt nanoparticles deposited at smooth glassy-carbon (GC) surfaces were elaborated and thoroughly characterized. Using such model Pt/GC surfaces enabled demonstrating that the borohydride oxidation reaction (BOR) is subjected to nanoparticle size and ensemble effects: larger particle diameter and shorter inter-particle distance yield faster BOR kinetics and larger faradaic efficiency. As previously noted for smooth Pt (and Au) surfaces, the Pt/GC nanoparticles are self-poisoned in the course of the BOR; surprisingly, such poisoning also proceeds in open-circuit conditions. The adsorbed intermediates formed in the course of the step-wise electrooxidation and heterogeneous hydrolysis processes are most likely yielding the Pt surface blocking below E = 0.6 V vs. Reversible Hydrogen Electrode (RHE). This blocking is, however, reversible, since incursions to potentials E > 0.6 V vs. RHE enable cleaning the Pt surface. Finally, comparing smooth Pt/GC surfaces to volumic active layers composed of Pt/carbon black (CB) demonstrates that the intrinsic activity/faradaic efficiency of the Pt nanoparticles may strongly be biased by mass-transport effects within the active layer. Larger (apparent) faradaic efficiency and lower BOR onset potential are observed for thick active layers, whereas the specific activity in these is artificially lowered following effectiveness factor well below unity in that case. As a result, the determination of the intrinsic activity of an electrocatalytic material should only be done with tremendous care and with a perfect control of the electrode/surface morphology, texture and structure.

Keywords

Well-defined Pt/glassy-carbon nanoparticles Borohydride oxidation reaction (BOR) Particle-size effect Inter-particle distance effect Pt loading effect 

Notes

Acknowledgments

PYO greatly acknowledges IDS FunMat for the financial support of his PhD thesis (project 2012-10LF). CRB thanks FAPESP for having funded his sandwich internship within the CAPES/BRAFITEC project N07-R10-05 (CDEFI). MC thanks Frédéric Maillard and Fabio H. B. Lima for fruitful discussion, Walter Felicori Ambrosio for having initiated the experiments on the Pt/GC materials, and Arnaud Mantoux (SIMAP) for his help in the synthesis of the Pt/GC nanoparticles. MC also acknowledges the French University Institute (IUF) for its support.

References

  1. 1.
    J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001)CrossRefGoogle Scholar
  2. 2.
    S.J. Visco, E. Nimon, L.C. De Jonghe, Secondary Batteries—metal-air Systems | Lithium-Air, in Encyclopedia of Electrochemical Power Sources, ed. by J. Garche (Elsevier, Amsterdam, 2009), pp. 376–383CrossRefGoogle Scholar
  3. 3.
    W. Vielstich, A. Lamm, H.A. Gasteiger, Handbook of Fuel Cells (Wiley, Chichester, 2003)Google Scholar
  4. 4.
    H.A. Gasteiger, W. Vielstich, H. Yokokawa, Handbook of Fuel Cells (Wiley, Chichester, 2009)Google Scholar
  5. 5.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9 (2005)CrossRefGoogle Scholar
  6. 6.
    E. Guilminot, A. Corcella, M. Chatenet, F. Maillard, F. Charlot, G. Berthome, C. Iojoiu, J.-Y. Sanchez, E. Rossinot, E. Claude, Membrane and active layer degradation upon PEMFC steady-state operation. J. Electrochem. Soc. 154, B1106 (2007)CrossRefGoogle Scholar
  7. 7.
    L. Dubau, F. Maillard, M. Chatenet, J. André, E. Rossinot, Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation. Electrochim. Acta 56, 776 (2010)CrossRefGoogle Scholar
  8. 8.
    L. Dubau, F. Maillard, M. Chatenet, L. Guetaz, J. Andre, E. Rossinot, Durability of Pt3Co/C cathodes in a 16 cell PEMFC stack: macro/microstructural changes and degradation mechanisms. J. Electrochem. Soc. 157, B1887 (2010)CrossRefGoogle Scholar
  9. 9.
    F. Maillard, L. Dubau, J. Durst, M. Chatenet, J. André, E. Rossinot, Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: direct evidence of bulk Co segregation to the surface. Electrochem. Commun. 12, 1161 (2010)CrossRefGoogle Scholar
  10. 10.
    L. Dubau, M. Lopez-Haro, L. Castanheira, J. Durst, M. Chatenet, P. Bayle-Guillemaud, L. Guétaz, N. Caqué, E. Rossinot, F. Maillard, Probing the structure, the composition and the ORR activity of Pt3Co/C nanocrystallites during a 3422 h PEMFC aging test, Appl. Catal. B: Environmental, in press (2013)Google Scholar
  11. 11.
    J. Durst, A. Lamibrac, F. Charlot, J. Dillet, L.F. Castanheira, G. Maranzana, L. Dubau, F. Maillard, M. Chatenet, O. Lottin, Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: inlet vs. outlet and channel vs. land. Appl. Catal. B Environ. 138-139, 416 (2013)CrossRefGoogle Scholar
  12. 12.
    S.C. Amendola, P. Onnerud, M.T. Kelly, P.J. Petillo, S.L. Sharp-Goldman, M. Binder, A novel high power density borohydride-air cell. J. Power Sources 84, 130 (1999)CrossRefGoogle Scholar
  13. 13.
    U.B. Demirci, Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J. Power Sources 169, 239 (2007)CrossRefGoogle Scholar
  14. 14.
    M.E. Indig, R.N. Snyder, Sodium borohydride, an interesting anodic fuel. 1. J. Electrochem. Soc. 109, 1104 (1962)CrossRefGoogle Scholar
  15. 15.
    E. Gyenge, Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim. Acta 49, 965 (2004)CrossRefGoogle Scholar
  16. 16.
    M. Chatenet, F. Micoud, I. Roche, E. Chainet, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte—Part I. BH4- electro-oxidation on Au and Ag catalysts. Electrochim. Acta 51, 5459 (2006)CrossRefGoogle Scholar
  17. 17.
    M. Chatenet, F. Micoud, I. Roche, E. Chainet, J. Vondrak, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte—Part II. O-2 reduction. Electrochim. Acta 51, 5452 (2006)CrossRefGoogle Scholar
  18. 18.
    E. Gyenge, M. Atwan, D. Northwood, Electrocatalysis of borohydride oxidation on colloidal Pt and Pt-alloys (Pt-Ir, Pt-Ni, and Pt-Au) and application for direct borohydride fuel cell anodes. J. Electrochem. Soc. 153, A150 (2006)CrossRefGoogle Scholar
  19. 19.
    M.H. Atwan, D.O. Northwood, E.L. Gyenge, Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells. Int. J. Hydrog. Energy 32, 3116 (2007)CrossRefGoogle Scholar
  20. 20.
    B. Molina Concha, M. Chatenet, Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt - Ag electrodes in basic media. Part I: bulk electrodes. Electrochim. Acta 54, 6119 (2009)CrossRefGoogle Scholar
  21. 21.
    B. Molina Concha, M. Chatenet, Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt - Ag electrodes in basic media. Part II: carbon supported nanoparticles. Electrochim. Acta 54, 6130 (2009)CrossRefGoogle Scholar
  22. 22.
    F. Pei, Y. Wang, X.Y. Wang, P.Y. He, Q.Q. Chen, X.Y. Wang, H. Wang, L.H. Yi, J. Guo, Performance of supported Au-Co alloy as the anode catalyst of direct borohydride-hydrogen peroxide fuel cell. Int. J. Hydrog. Energy 35, 8136 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Simões, S. Baranton, C. Coutanceau, Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4. Electrochim. Acta 56, 580 (2010)CrossRefGoogle Scholar
  24. 24.
    P.Y. He, X.Y. Wang, P. Fu, H. Wang, L.H. Yi, The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell. Int. J. Hydrog. Energy 36, 8857 (2011)CrossRefGoogle Scholar
  25. 25.
    L.H. Yi, Y.F. Song, X. Liu, X.Y. Wang, G.S. Zou, P.Y. He, W. Yi, High activity of Au-Cu/C electrocatalyst as anodic catalyst for direct borohydride-hydrogen peroxide fuel cell. Int. J. Hydrog. Energy 36, 15775 (2011)CrossRefGoogle Scholar
  26. 26.
    A.C. Garcia, F.H.B. Lima, E.A. Ticianelli, M. Chatenet, Carbon-supported nickel-doped manganese oxides as electrocatalysts for the oxygen reduction reaction in the presence of sodium borohydride. J. Power Sources 222, 305 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Chatenet, B. Molina-Concha, J.-P. Diard, First insights into the borohydride oxidation reaction mechanism on gold by electrochemical impedance spectroscopy. Electrochim. Acta 54, 1687 (2009)CrossRefGoogle Scholar
  28. 28.
    B. Molina Concha, M. Chatenet, C. Coutanceau, F. Hahn, In situ infrared (FTIR) study of the borohydride oxidation reaction. Electrochem. Commun. 11, 223 (2009)CrossRefGoogle Scholar
  29. 29.
    B. Molina Concha, M. Chatenet, F. Maillard, E.A. Ticianelli, F.H.B. Lima, R.B. de Lima, In situ infrared (FTIR) study of the mechanism of the borohydride oxidation reaction. Phys. Chem. Chem. Phys. 12, 11507 (2010)CrossRefGoogle Scholar
  30. 30.
    B. Molina Concha, M. Chatenet, E.A. Ticianelli, F.H.B. Lima, In situ infrared (FTIR) study of the mechanism of the borohydride oxidation reaction on smooth Pt electrode. J. Phys. Chem. C 115, 12439 (2011)CrossRefGoogle Scholar
  31. 31.
    M.B. Molina Concha, K.S. Freitas, A.M. Pasqualeti, M. Chatenet, F.H.B. Lima, E.A. Ticianelli, Boston, MA, 2011Google Scholar
  32. 32.
    F.H.B. Lima, A.M. Pasqualeti, M.B. Molina Concha, M. Chatenet, E.A. Ticianelli, Borohydride electrooxidation on Au and Pt electrodes. Electrochim. Acta 84, 202 (2012)CrossRefGoogle Scholar
  33. 33.
    K.S. Freitas, B.M. Concha, E.A. Ticianelli, M. Chatenet, Borohydride oxidation on Pt-based electrodes: evidence of residence time effect on the reaction onset and faradaic efficiency. ECS Trans. 33, 1693 (2010)CrossRefGoogle Scholar
  34. 34.
    K.S. Freitas, B.M. Concha, E.A. Ticianelli, M. Chatenet, Mass transport effects in the borohydride oxidation reaction—influence of the residence time on the reaction onset and faradaic efficiency. Catal. Today 170, 110 (2011)CrossRefGoogle Scholar
  35. 35.
    M. Chatenet, F.H.B. Lima, E.A. Ticianelli, Gold is not a Faradaic-efficient borohydride oxidation electrocatalyst: an online electrochemical mass spectrometry study. J. Electrochem. Soc. 157, B697 (2010)CrossRefGoogle Scholar
  36. 36.
    D.A. Finkelstein, N.D. Mota, J.L. Cohen, H.D. Abruña, Rotating Disk Electrode (RDE) Investigation of BH4 - and BH3OH- electro-oxidation at Pt and Au: implications for BH4 - fuel cells. J. Phys. Chem. C 113, 19700 (2009)CrossRefGoogle Scholar
  37. 37.
    P.S. Ruvinskiy, A. Bonnefont, C. Pham-Huu, E.R. Savinova, Using ordered carbon nanomaterials for shedding light on the mechanism of the cathodic oxygen reduction reaction. Langmuir 27, 9018 (2011)CrossRefGoogle Scholar
  38. 38.
    A. Schneider, L. Colmenares, Y.E. Seidel, Z. Jusys, B. Wickman, B. Kasemo, R.J. Behm, Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Phys. Chem. Chem. Phys. 10, 1931 (2008)CrossRefGoogle Scholar
  39. 39.
    P.S. Ruvinskiy, A. Bonnefont, M. Bayati, E.R. Savinova, Mass transport effects in CO bulk electrooxidation on Pt nanoparticles supported on vertically aligned carbon nanofilaments. Phys. Chem. Chem. Phys. 12, 15207 (2010)CrossRefGoogle Scholar
  40. 40.
    O. Antoine, Y. Bultel, R. Durand, P. Ozil, Electrocatalysis, diffusion and ohmic drop in PEMFC: particle size and spatial discrete distribution effects. Electrochim. Acta 43, 3681 (1998)CrossRefGoogle Scholar
  41. 41.
    Y. Takasu, N. Ohashi, X.G. Zhang, Y. Murakami, H. Minagawa, S. Sato, K. Yahikozawa, Effects of platinum particles on the electroreduction of oxygen. Electrochim. Acta 41, 2595 (1996)CrossRefGoogle Scholar
  42. 42.
    F. Maillard, S. Pronkin, E.R. Savinova, Size effects in electrocatalysis of fuel cells reactions on supported metal nanoparticles, in: M.T.M. Koper (Ed.) Fuel cell catalysis: a surface science approach, Wiley, New York, 2009, pp. in pressGoogle Scholar
  43. 43.
    M. Watanabe, H. Sei, P. Stonehart, The influence of platinum crystallite size on the electroreduction of oxygen. J. Electroanal. Chem. 261, 375 (1989)CrossRefGoogle Scholar
  44. 44.
    O.V. Cherstiouk, P.A. Simonov, E.R. Savinova, Model approach to evaluate particle size effects in electrocatalysis: preparation and properties of Pt nanoparticles supported on GC and HOPG. Electrochim. Acta 48, 3851 (2003)CrossRefGoogle Scholar
  45. 45.
    O.V. Cherstiouk, P.A. Simonov, V.I. Zaikovskii, E.R. Savinova, CO monolayer oxidation at Pt nanoparticles supported on glassy carbon electrodes. J. Electroanal. Chem. 554, 241 (2003)CrossRefGoogle Scholar
  46. 46.
    N. Job, M. Chatenet, S. Berthon-Fabry, S. Hermans, F. Maillard, Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: avoid chloride-based Pt salts! J. Power Sources 240, 294 (2013)CrossRefGoogle Scholar
  47. 47.
    V. Stamenkovic, N.M. Markovic, P.N. Ross, Structure-relationships in electrocatalysis: oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J. Electroanal. Chem. 500, 44 (2001)CrossRefGoogle Scholar
  48. 48.
    J.O.M. Bockris, S.U.M. Khan, Surface electrochemistry—a molecular level approach (Plenum Press, New York, 1993)CrossRefGoogle Scholar
  49. 49.
    F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf, U. Stimming, Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 7, 385 (2005)CrossRefGoogle Scholar
  50. 50.
    F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss. 125, 357 (2004)CrossRefGoogle Scholar
  51. 51.
    E. Guilminot, F. Fischer, M. Chatenet, A. Rigacci, S. Berthon-Fabry, P. Achard, E. Chainet, Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: Electrochemical characterization. J. Power Sources 166, 104 (2007)CrossRefGoogle Scholar
  52. 52.
    E. Guilminot, R. Gavillon, M. Chatenet, S. Berthon-Fabry, A. Rigacci, T. Budtova, New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis. J. Power Sources 185, 717 (2008)CrossRefGoogle Scholar
  53. 53.
    J. Rooke, C.D. Passos, M. Chatenet, R. Sescousse, T. Budtova, S. Berthon-Fabry, R. Mosdale, F. Maillard, Synthesis and properties of platinum nanocatalyst supported on cellulose-based carbon aerogel for applications in PEMFCs. J. Electrochem. Soc. 158, B779 (2011)CrossRefGoogle Scholar
  54. 54.
    F. Maillard, E.R. Savinova, U. Stimming, CO Monolayer Oxidation on Pt nanoparticles: further insights into the particle size effects. J. Electroanal. Chem. 599, 221 (2007)CrossRefGoogle Scholar
  55. 55.
    M. Chatenet, L. Génies-Bultel, M. Aurousseau, R. Durand, F. Andolfatto, Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide—comparison with platinum. J. Appl. Electrochem. 32, 1131 (2002)CrossRefGoogle Scholar
  56. 56.
    M. Chatenet, M. Aurousseau, R. Durand, F. Andolfatto, Silver-platinum bimetallic catalysts for oxygen cathodes in chlor-alkali electrolysis—comparison with pure platinum. J. Electrochem. Soc. 150, D47 (2003)CrossRefGoogle Scholar
  57. 57.
    G. Parrour, M. Chatenet, J.-P. Diard, Electrochemical impedance spectroscopy study of borohydride oxidation reaction on gold—towards a EE MECHANISM. Electrochim. Acta 55, 9113 (2010)CrossRefGoogle Scholar
  58. 58.
    D.A. Finkelstein, C.D. Letcher, D.J. Jones, L.M. Sandberg, D.J. Watts, H.D. Abruña, Self-poisoning during BH4-oxidation at Pt and Au, and in situ poison removal procedures for BH4-fuel cells. J. Phys. Chem. C 117, 1571 (2013)CrossRefGoogle Scholar
  59. 59.
    P.-Y. Olu, B. Gilles, N. Job, M. Chatenet, Influence of the surface morphology of smooth platinum electrodes for the sodium borohydride oxidation reaction, Electrochem. Commun., in press (2014)Google Scholar
  60. 60.
    G. Rostamikia, M.J. Janik, First principles mechanistic study of borohydride oxidation over the Pt(1 1 1) surface. Electrochim. Acta 55, 1175 (2010)CrossRefGoogle Scholar
  61. 61.
    P.S. Ruvinskiy, A. Bonnefont, M. Houllé, C. Pham-Huu, E.R. Savinova, Preparation, testing and modeling of three-dimensionally ordered catalytic layers for electrocatalysis of fuel cell reactions. Electrochim. Acta 55, 3245 (2010)CrossRefGoogle Scholar
  62. 62.
    J.P. Elder, A.H. Hickling, Anodic behaviour of the borohydride ion. Trans. Faraday Soc. 58, 1852 (1962)CrossRefGoogle Scholar
  63. 63.
    J.H. Morris, H.J. Gysling, D. Reed, Electrochemistry of boron compounds. Chem. Rev. 85, 51 (1985)CrossRefGoogle Scholar
  64. 64.
    G. Rostamikia, M.J. Janik, Direct borohydride oxidation: mechanism determination and design of alloy catalysts guided by density functional theory. Energy Environ. Sci. 3, 1262 (2010)CrossRefGoogle Scholar
  65. 65.
    J.A. Gardiner, J.W. Collat, Kinetics of the stepwise hydrolysis of tetrahydroborate ion. J. Am. Chem. Soc. 87, 1692 (1965)CrossRefGoogle Scholar
  66. 66.
    E. Thiele, Relation between catalytic activity and size of particle. Ind. Eng. Chem. 31, 916 (1939)CrossRefGoogle Scholar
  67. 67.
    A. Wheeler, Reaction rate and selectivity in catalyst pores. Adv. Catal. 3, 249 (1951)CrossRefGoogle Scholar
  68. 68.
    J.A.S. Bett, K. Kinoshita, P. Stonehart, Crystallite growth of platinum dispersed on graphitized carbon-black. 2. Effect of liquid environment. J. Catal. 41, 124 (1976)CrossRefGoogle Scholar
  69. 69.
    F. Gloaguen, F. Andolfatto, R. Durand, P. Ozil, Kinetic-study of electrochemical reactions at catalyst-recast ionomer interfaces from thin active layer modeling. J. Appl. Electrochem. 24, 863 (1994)CrossRefGoogle Scholar
  70. 70.
    F. Gloaguen, R. Durand, Simulations of PEFC cathodes: an effectiveness factor approach. J. Appl. Electrochem. 27, 1029 (1997)CrossRefGoogle Scholar
  71. 71.
    M. Chatenet, L. Dubau, N. Job, F. Maillard, The (electro)catalyst | membrane interface in the proton exchange membrane fuel cell: similarities and differences with non-electrochemical Catalytic Membrane Reactors. Catal. Today 156, 76 (2010)CrossRefGoogle Scholar
  72. 72.
    L. Genies, R. Faure, R. Durand, Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim. Acta 44, 1317 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre-Yves Olu
    • 1
    • 2
    • 3
  • Caio Ribeiro Barros
    • 1
    • 2
  • Nathalie Job
    • 3
  • Marian Chatenet
    • 1
    • 2
    • 4
    Email author
  1. 1.University Grenoble AlpesLEPMI, F-38000GrenobleFrance
  2. 2.CNRSLEPMI, F-38000GrenobleFrance
  3. 3.Laboratory of Chemical EngineeringUniversity of LiègeLiègeBelgium
  4. 4.French University Institute (IUF)ParisFrance

Personalised recommendations