Electrocatalysis

, Volume 5, Issue 3, pp 301–309 | Cite as

New Electrocatalysts with Pyrolyzed Siloxane Matrix

  • C. Harms
  • M. Adam
  • K. A. Soliman
  • M. Wilhelm
  • L. A. Kibler
  • T. Jacob
  • G. Grathwohl
Article

Abstract

In a first screening, platinum nanoparticles in pyrolyzed siloxane matrices with additional carbon fillers were developed and tested for their use as electrocatalysts. The influence of various parameters - type of carbon filler, carbon content, pyrolysis temperature, and siloxane composition - on structural properties and on electrochemical activity was investigated. Homogeneous distributions of platinum nanoparticles could be obtained for most of these electrocatalysts. Uniform platinum particles were generated with average particle sizes of 2.5–4.7 nm. At a temperature of 300 °C, the siloxane-based electrocatalysts exhibit high thermal stabilities with maximum weight losses of around 8 wt% after 20 h. The electrochemical behavior of the siloxane-based electrocatalysts in contact with 0.1 M H2SO4 was studied by cyclic voltammetry. Electrocatalytic activities were studied by CO adlayer oxidation, which also served for determining the electrochemical active surface area. High electrochemically active surface areas with up to 50 m2 g−1 Pt were obtained, which are in the same range as carbon-based electrocatalysts. Interestingly, some siloxane-based electrocatalysts showed a slightly higher catalytic activity for CO adlayer oxidation than carbon-based materials.

Keywords

Electrocatalyst Siloxane Pt nanoparticles Cyclic voltammetry CO oxidation HT-PEM fuel cells 

Notes

Acknowledgments

This work was financed by the “Förderprogramm Angewandte Umweltforschung” of the federal state Bremen, Germany. Further support was given by the German Research Foundation (DFG) within the Research Training Group 1375 “Nonmetallic Porous Structures for Physical-Chemical Functions.” We thank Oliver Oppermann from the Institute of Solid State Physics at the University of Bremen for the TEM images. Further, support through the EU-project CATAPULT (GA-No. 325268) is acknowledged.

References

  1. 1.
    J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D.P. Wilkinson, Z. Liu, S. Holdcroft, J. Pow. Sour. 160, 872 (2006)CrossRefGoogle Scholar
  2. 2.
    J. McBreen, H. Olender, S. Srinivasan, K.V. Kordesch, J. Appl. Electrochem. 11, 787 (1981)CrossRefGoogle Scholar
  3. 3.
    E. Antolini, J. Mater. Sci. 38, 2995 (2003)CrossRefGoogle Scholar
  4. 4.
    E. Antolini, Appl. Catal. B 88, 1 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Shao, J. Liu, Y. Wang, Y. Lin, J. Mater. Chem. 19, 46 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Smirnova, X. Dong, H. Hara, A. Vasiliev, N. Sammes, Int. J. Hydrogen Energ. 30, 149 (2005)CrossRefGoogle Scholar
  7. 7.
    E. Antolini, E.R. Gonzalez, Solid State Ionics 180, 746 (2009)CrossRefGoogle Scholar
  8. 8.
    D. Eder, Chem. Rev. 110, 1348 (2010)CrossRefGoogle Scholar
  9. 9.
    E. Antolini, Appl. Catal. B 100, 413 (2010)CrossRefGoogle Scholar
  10. 10.
    L. Hu, R. Ceccato, R. Raj, J. Pow, Sour. 196, 69 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Peña-Alonso, A. Sicurelli, E. Callone, G. Carturan, R. Raj, J. Pow. Sources 165, 315 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Adam, M. Wilhelm, G. Grathwohl, Micropor. Mesopor. Mat. 151, 195 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Wilhelm, M. Adam, M. Bäumer, G. Grathwohl, Adv. Eng. Mater. 10, 241 (2008)CrossRefGoogle Scholar
  14. 14.
    T.J. Schmidt, H.A. Gasteiger, G.D. Stäb, P.M. Urban, D.M. Kolb, R.J. Behm, J. Electrochem. Soc. 145, 2354 (1998)CrossRefGoogle Scholar
  15. 15.
    D.-J. Guo, S.-K. Cui, J. Sol. State Electrochem. 12, 1393 (2008)CrossRefGoogle Scholar
  16. 16.
    P. Sonström, M. Adam, X. Wang, M. Wilhelm, G. Grathwohl, M. Bäumer, J. Phys. Chem. C 114, 14224 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Cordelair, P. Greil, J. Eur. Ceram. Soc. 20, 1947 (2000)CrossRefGoogle Scholar
  18. 18.
    S.-P. Rwei, F.H. Ku, K.C. Cheng, Coll. Polymer Sci. 280, 1110 (2002)CrossRefGoogle Scholar
  19. 19.
    D. Sebastián, J.C. Calderón, J.A. González-Expósito, E. Pastor, M.V. Martínez-Huerta, I. Suelves, R. Moliner, M.J. Lázaro, Int. J. Hydrogen Energ. 35, 9934 (2010)CrossRefGoogle Scholar
  20. 20.
    G. Jerkiewicz, G. Vatankhah, J. Lessard, M.P. Soriaga, Y.S. Park, Electrochim. Acta 49 (1451) (2004)Google Scholar
  21. 21.
    F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf, U. Stimming, PCCP 7, 385 (2005)CrossRefGoogle Scholar
  22. 22.
    P. Parthasarathy, A.V. Virkar, J. Pow. Sour. 234, 82 (2013)CrossRefGoogle Scholar
  23. 23.
    D. Zhao, B. Xu, Angew. Chem. Int. Ed. 45, 4955 (2006)CrossRefGoogle Scholar
  24. 24.
    N.P. Lebedeva, A. Rodes, J.M. Feliu, M.T.M. Koper, R.A. van Santen, J. Phys. Chem. B 106, 9863 (2002)CrossRefGoogle Scholar
  25. 25.
    N.P. Lebedeva, M.T.M. Koper, J.M. Feliu, R.A. van Santen, J. Phys. Chem. B 106, 12938 (2002)CrossRefGoogle Scholar
  26. 26.
    F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Faraday Discuss. 125, 357 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • C. Harms
    • 1
  • M. Adam
    • 1
  • K. A. Soliman
    • 2
    • 3
  • M. Wilhelm
    • 1
  • L. A. Kibler
    • 2
  • T. Jacob
    • 2
  • G. Grathwohl
    • 1
  1. 1.Advanced CeramicsUniversity of BremenBremenGermany
  2. 2.Institute of ElectrochemistryUniversity of UlmUlmGermany
  3. 3.Electrochemistry and Corrosion Laboratory, Physical Chemistry DepartmentNational Research CentreCairoEgypt

Personalised recommendations