Abstract
Here we investigate the electrochemical behavior of Pd/C synthesized by reduction with ethylene glycol in the presence of polyvinylpyrrolidone (EG-PVP). EG-PVP produces nanoparticles (NPs) with a narrow size distribution, but some of them remain covered by impurities after the synthesis. After successive voltammetric cycles, NPs become cleaner, but some agglomeration and structural modification occur; these effects affect the electrochemical behavior of Pd/C in different ways, so we used CO as a probe to better understand the processes taking place. CO stripping shows that the general features of the multiple oxidation peaks change with the number of cycles. Possibly, CO and OH from different NPs react when the particles agglomerate, contributing to CO stripping changes. Finally, different active areas are found when the charges involved in CO oxidation and PdO reduction are compared. Such differences are rationalized in terms of a balance between the increase of sites which promote the oxidation of CO and the loss of area provoked by the growing of the particles.

After successive voltammetric cycles, Pd/C NPs become cleaner with slightly agglomeration, which lead to increase of the electrochemically active surface area. The value of area reaches a maximum, after this point the agglomeration is the main effect and contributes to the surface area decay. The agglomeration facilitates the CO electrooxidation reaction among NPs
This is a preview of subscription content, access via your institution.








References
M. Watanabe, S. Motoo, J. Electroanal. Chem. 60, 275 (1975)
Y.C. Wei, C.W. Liu, W.D. Kang, C.M. Lai, L.D. Tsai, K.W. Wang, J. Electroanal. Chem. 660, 64 (2011)
Y. Bi, L. Chen, G. Lu, J. Mol. Catal. A Chem. 266, 173 (2007)
M. Chen, Y. Xing, Langmuir 21, 9334 (2005)
P.S. Fernández, M.E. Martins, G.A. Camara, Electrochim. Acta 66, 180 (2012)
H. Hei, H. He, R. Wang, X. Liu, G. Zhang, Soft Nanosci. Lett. 2, 34 (2012)
C. Susut, T.D. Nguyen, G.B. Chapman, Y. Tong, Electrochim. Acta 53, 6135 (2008)
D. Li, C. Wang, D. Tripkovic, S. Sun, N.M. Markovic, V.R. Stamenkovic, ACS Catal. 2, 1358 (2012)
A. Goel, N. Rani, Open J. Inorg. Chem. 2, 67 (2012)
K. Gong, M.B. Vukmirovic, C. Ma, Y. Zhu, R.R. Adzic, J. Electroanal. Chem. 662, 213 (2011)
L.H.S. Gasparotto, J.F. Gomes, G. Tremiliosi-Filho, J. Electroanal. Chem. 663, 48 (2011)
A.M. Hofstead-Duffy, D.J. Chen, Y.J. Tong, Electrochim. Acta 82, 543 (2012)
C. Coutanceau, P. Urchaga, S. Brimaud, S. Baranton, Electrocatal. 3, 75 (2012)
J. Solla-Gullon, V. Montiel, A. Aldaz, J. Clavilier, J. Electroanal. Chem. 491, 69 (2000)
P.S. Fernández, D.S. Ferreira, C.A. Martins, H.E. Troiani, G.A. Camara, M.E. Martins, Electrochim. Acta 98, 25 (2013)
P.L. Redmond, A.J. Hallock, L.E. Brus, Nano Lett. 5, 131 (2005)
F.R. Nikkuni, E.A. Ticianelli, L. Dubau, M. Chatenet, Electrocatal. 4, 104 (2013)
O.V. Chertiouk, P.A. Simonov, E.R. Savinova, Electrochim. Acta 48, 3851 (2003)
F. Maillard, E.R. Savinova, P.A. Simonov, V.I. Zaikovskii, U. Stimming, J. Phys. Chem. B 108, 17893 (2004)
F. Maillard, E.R. Savinova, U. Stimming, J. Electroanal. Chem. 599, 221 (2007)
G.A. Camara, J.F. Gomes, K. Bergamaski, E. Teixeira-Neto, F.C. Nart, J. Electroanal. Chem. 617, 171 (2008)
A. López-Cudero, J. Solla-Gullón, E. Herrero, A. Aldaz, J.M. Feliu, J. Electroanal. Chem. 644, 117 (2010)
S. Park, S.A. Waisileski, M.J. Weaver, J. Phys. Chem. B 105, 9719 (2001)
S. Park, Y.J. Tong, A. Wieckowski, M.J. Weaver, Langmuir 18, 3233 (2002)
R. Lamber, S. Wetjen, N.I. Jaeger, Phys. Rev. B Solid State 51, 10968 (1995)
A.E. Bolzán, J. Electroanal. Chem. 380, 127 (1995)
A. Marcu, G. Toth, R. Srivastava, P. Strasser, J. Power Sources 208, 288 (2012)
F. Hasché, M. Oezaslan, P. Strasser, ChemCatChem 3, 1805 (2011)
F. Hasche, M. Oezaslan, P. Strasser, Phys. Chem. Chem. Phys. 12, 15251 (2010)
W.J. Plieth, J. Phys. Chem. 86, 3166 (1982)
L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, G. Ceder, J. Am. Chem. Soc. 132, 596 (2009)
H.A. Kozlowska, J.O.’.M. Bockris, in Comprehensive Treatise of Electrochemistry, ed. by E.B. Yeager, B.E. Conway, S. Sarangapani, vol. 9 (Plenum, New York, 1984), p. 2
R.S. Ferreira Jr., M.J. Giz, G.A. Camara, J. Electroanal. Chem. 697, 15 (2013)
Y. Sugawara, A.P. Yadav, A. Nishikata, T. Tsuru, J. Electroanal. Chem. 662, 379 (2011)
K.J.J. Mayrhofer, M. Arenz, B.B. Blizanac, V. Stamenkovic, P.N. Ross, N.M. Markovic, Electrochim. Acta 50, 5144 (2005)
J.S. Spendelow, J.D. Goodpaster, P.J.A. Kenis, A. Wieckowski, J. Phys. Chem. B 110, 9545 (2006)
B. Hammer, O.H. Nielsen, J.K. Norskov, Catal. Lett. 46, 31 (1997)
M. Arenz, K.J.J. Mayrhofer, V. Stamenkovic, B.B. Blizanac, T. Tomoyuki, P.N. Ross, N.M. Markovic, J. Am. Chem. Soc. 127, 6819 (2005)
Y.S. Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Top. Catal. 46, 285 (2007)
J. Clavilier, D. Armand, J. Electroanal. Chem. 199, 187 (1986)
C. Grolleau, C. Coutanceau, F. Pierre, J.-M. Léger, Electrochim. Acta 53, 7157 (2008)
Z. Cui, P.J. Kulesza, C.M. Li, W. Xing, S.P. Jiang, Int. J. Hydrogen Energy 36, 8508 (2011)
C. Hsu, C. Huang, Y. Hao, F. Liu, Phys. Chem. Chem. Phys. 14, 14696 (2012)
R. Lin, C. Cao, H. Zhang, H. Huang, J. Ma, Int. J. Hydrogen Energy 37, 4648 (2012)
C. Hsu, C. Huang, Y. Hao, F. Liu, Electrochem. Commun. 23, 133 (2012)
E. Antolini, J. Power Sources 170, 1 (2007)
D.F. van der Vliet, C. Wang, D. Li, A.P. Paulikas, J. Greeley, R.B. Rankin, D. Strmcnik, D. Tripkovic, N.M. Markovic, V.R. Stamenkovic, Angew. Chem. 124, 3193 (2012)
Acknowledgments
The authors acknowledge financial assistance from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNLP, CNPq (grant # 554591/2010-3), FUNDECT (grants # 23/200.065/2008 and # 23/200.583/2012), CAPES, MINCyT, and FINEP. P.S. Fernández thanks CONICET for a fellowship. C.A. Martins thanks CNPq for a fellowship (grant # 140426/2011-6). Authors want to thank Alejandra Floridia for taking HR-TEM images.
Author information
Authors and Affiliations
Corresponding authors
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
ESM 1
(DOCX 385 kb)
Rights and permissions
About this article
Cite this article
Martins, C.A., Fernández, P.S., Troiani, H.E. et al. Agglomeration and Cleaning of Carbon Supported Palladium Nanoparticles in Electrochemical Environment. Electrocatalysis 5, 204–212 (2014). https://doi.org/10.1007/s12678-014-0184-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12678-014-0184-3
Keywords
- Palladium nanoparticles
- PVP
- Cleaning process
- Agglomeration of nanoparticles
- Active surface area
- CO probe