Skip to main content
Log in

Lactose Electrooxidation on the Nickel Oxide Nanoparticles Electrocatalyst Prepared on the Multi-walled Carbon Nanotubes Modified Electrode

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The preparation of multi-walled carbon nanotubes–NiO nanoparticles composites (MWCNT–NiO) is presented and the composites were used for modification of glassy carbon electrode for lactose electrooxidation in NaOH. Nickel oxide (NiO) was accumulated on multi-walled carbon nanotubes (MWCNT) by pulsed potential electrodeposition. The structure and nature of the MWCNT–NiO were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behaviour of MWCNT–NiO nanoparticles composite in an aqueous solution of alkaline of lactose was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). The peak on the voltammogram for MWCNT–NiO composite electrode in alkaline solutions of lactose was observed which was ascribed to the lactose oxidation in alkaline medium. The results obtained are discussed from the point of view of employment of the MWCNT–NiO composites for the catalytic electrodes of sugar-oxygen fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. M.P. Coughlan, G.P. Hazlewood, Hemicellulose and Hemicellulases (Portland Press, London, 1993)

    Google Scholar 

  2. L.F. Gutiérrez, S. Hamoudi, K. Belkacemi, Int. Dairy J. 26, 103 (2012)

    Article  Google Scholar 

  3. L.P.C. Cuevas, M.A. Franco, E.H. Baltazar, Powder Technol. 224, 57 (2012)

    Article  Google Scholar 

  4. T. Charinpanitkul, W. Tanthapanichakoon, P. Kulvanich, K.-S. Kim, J. Indust, Eng. Chem. 14, 661 (2008)

    CAS  Google Scholar 

  5. N. Meyer, D. Pirson, M. Devillers, S. Hermans, Appl. Catal. A 467, 463 (2013)

    Article  CAS  Google Scholar 

  6. G.M. Escandar, A.C. Olivier, M. Gonzalez-Sierra, L.F. Sala, J. Chem. Soc. Dalton Trans. 8, 1189 (1994)

    Article  Google Scholar 

  7. M. Shamsipur, M. Asgari, M.G. Maragheh, A.A. Moosavi-Movahedi, Bioelectrochemistry 83, 31 (2012)

    Article  Google Scholar 

  8. B. Rafiee, A.R. Fakhari, Biosens. Bioelectron. 46, 130 (2013)

    Article  CAS  Google Scholar 

  9. M. Asgari, M. Shanehsaz, M. Shamsipur, M.G. Maragheh, J. Appl. Electrochem. 43, 15 (2013)

    Article  CAS  Google Scholar 

  10. G. Majumdar, M. Goswami, T.K. Sarma, A. Paul, A. Chattopadhay, Langmuir 21, 1663 (2005)

    Article  CAS  Google Scholar 

  11. Y. Egawa, T. Seki, S. Takahashi, J.-i. Anzai, Mat. Sci. Eng. C 31, 1257 (2011)

    Article  CAS  Google Scholar 

  12. A. Heller, Phys. Chem. Chem. Phys. 6, 209 (2004)

    Article  CAS  Google Scholar 

  13. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties (John & Wiley, New York, 1987)

    Google Scholar 

  14. C.T. Hsieh, H. Teng, Carbon 40, 667 (2002)

    Article  CAS  Google Scholar 

  15. D.J. Guo, H.L. Li, Carbon 43, 1259 (2005)

    Article  CAS  Google Scholar 

  16. F.B. Zhang, Y.K. Zhou, H.L. Li, Mater. Chem. Phys. 83, 260 (2004)

    Article  CAS  Google Scholar 

  17. X.M. Liu, X.G. Zhang, Electrochim. Acta 49, 229 (2004)

    Article  CAS  Google Scholar 

  18. C.C. Hu, C.Y. Lin, T.C. Wen, Mater. Chem. Phys. 44, 233 (1996)

    Article  CAS  Google Scholar 

  19. M. Asgari, M. Ghannadi Maragheh, R. Davarkhah, E. Lohrasbi, J. Electrochem. Soc. 158, K225 (2011)

    Article  CAS  Google Scholar 

  20. A.N. Golikand, M. Asgari, M. Ghannadi Maragheh, S. Shahrokhian, J. Electroanal. Chem. 588, 155 (2006)

    Article  CAS  Google Scholar 

  21. A.N. Golikand, S. Shahrokhian, M. Asgari, M. Ghannadi Maragheh, L. Irannejad, A. Khanchi, J. Power. Sources 144, 21 (2005)

    Article  CAS  Google Scholar 

  22. A. Seghiour, J. Chevalet, A. Barhoum, F. Lantelme, J. Electroanal. Chem. 442, 113 (1998)

    Article  Google Scholar 

  23. A.A. El-Shafei, J. Electroanal. Chem. 471, 89 (1999)

    Article  CAS  Google Scholar 

  24. G. Ve′rtes, G. Hora′ny, J. Electroanal. Chem. 52, 47 (1974)

    Article  Google Scholar 

  25. P.M. Robertson, J. Electroanal. Chem. 111, 97 (1980)

    Article  CAS  Google Scholar 

  26. J. Taraszewska, G. Rostonek, J. Electroanal. Chem. 364, 209 (1994)

    Article  CAS  Google Scholar 

  27. J.A. Harrison, Z.A. Khan, The oxidation of hydrazine on platinum in acid solution. J. Electroanal. Chem. 28, 131 (1970)

    Article  CAS  Google Scholar 

  28. A.J. Bard, L.R. Faulkner, Electrochemical Methods (Wiley, New York, 2001)

    Google Scholar 

  29. R.M.A. Tehrani, S. Ab Ghani, Fuel Cells 9, 579 (2009)

    Article  CAS  Google Scholar 

  30. A. Maritan, F. Toigo, On skewed arc plots of impedance of electrodes with an irreversible electrode process. Electrochim. Acta 35, 141 (1990)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Asgari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behzad, M., Asgari, M., Taghizadeh, M. et al. Lactose Electrooxidation on the Nickel Oxide Nanoparticles Electrocatalyst Prepared on the Multi-walled Carbon Nanotubes Modified Electrode. Electrocatalysis 5, 159–166 (2014). https://doi.org/10.1007/s12678-013-0178-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-013-0178-6

Keywords

Navigation