Skip to main content

On the Substantially Improved Photoelectrochemical Properties of Nanoporous WO3 Through Surface Decoration with RuO2

Abstract

Solar fuel generation, either through photochemical or photoelectrochemical (PEC) routes, is one of the most prominent pathways to harvest sunlight in order to contribute to a diversified and sustainable energy supply. Oxygen evolution reaction (OER) from aqueous solutions is the half reaction of different energy related reaction schemes, most importantly stoichiometric water splitting (H2 generation) or CO2 reduction. In this paper, we present PEC water oxidation (OER) on nanoporous WO3 films, decorated with RuO2 nanoparticles. The morphology and the composition of these nanostructured assemblies were characterized by high-resolution scanning electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry while their photo-electrochemical behavior was evaluated by photovoltammetry and incident photon-to-current conversion efficiency (IPCE) measurements. The O2 evolution capability was directly assessed by determining the amount of evolved O2 gas during PEC oxidation of water. The RuO2 electrocatalyst substantially increased photoanodic current flow through facile transfer of photogenerated holes from WO3 to the solution, thereby improving interfacial charge transfer kinetics. Both absolute and relative enhancement of photocurrents was analyzed as a function of the applied external bias potential giving important insight into the mechanistic details. Furthermore, the decisive roles of the amount of RuO2 co-catalyst and thermal pretreatment were established by synthesizing hybrid assemblies with different RuO2 coverage, and applying subsequent thermal treatment, respectively. Through careful optimization of the composition of the hybrid material, the IPCE value doubled at lower bias potentials and was increased close to the theoretical 100 % limit at higher positive potential values. These results demonstrate the synergy gained by combining the excellent photoanodic properties of nanoporous WO3 with the robust O2 evolution capabilities of RuO2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. N. Lewis, D. Nocera, Proc. Natl. Acad. Sci. 104, 15729 (2006)

    Article  Google Scholar 

  2. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  3. K. Rajeshwar, J. Phys. Chem. Lett. 2, 1301 (2011)

    Article  CAS  Google Scholar 

  4. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253 (2009)

    Article  CAS  Google Scholar 

  5. F.E. Osterloh, Chem. Soc. Rev. 42, 2294 (2013)

    Article  CAS  Google Scholar 

  6. K. Rajeshwar, J. Appl. Electrochem. 37, 765 (2007)

    Article  CAS  Google Scholar 

  7. B.D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska, J. Augustynski, J. Mater. Chem. 18, 2298 (2008)

    Article  CAS  Google Scholar 

  8. Q. Jia, K. Iwashina, A. Kudo, Proc. Natl. Acad. Sci. 109, 11564 (2012)

    Article  CAS  Google Scholar 

  9. D.A. Wheeler, G. Wang, Y. Ling, Y. Li, J.Z. Zhang, Energy Environ. Sci. 5, 6682 (2012)

    Article  CAS  Google Scholar 

  10. X. Feng, T.J. Latempa, J.I. Basham, G.K. Mor, O.K. Varghese, C.A. Grimes, Nano Lett. 10, 948 (2010)

    Article  CAS  Google Scholar 

  11. H. Dang, N. Hahn, H. Park, A. Bard, C. Mullins, J. Phys. Chem. C 116, 19225 (2012)

    Article  CAS  Google Scholar 

  12. C.A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, A. Tacca, Chem. Soc. Rev. 42, 2228 (2013)

    Article  CAS  Google Scholar 

  13. G. Hodes, D. Cahen, J. Manassen, Nature 260, 312 (1976)

    Article  CAS  Google Scholar 

  14. X. Liu, F. Wang, Q. Wang, Phys. Chem. Chem. Phys. 14, 7894 (2012)

    Article  CAS  Google Scholar 

  15. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Func. Mater. 21, 2175 (2011)

    Article  CAS  Google Scholar 

  16. S. Berger, H. Tsuchiya, A. Ghicov, P. Schmuki, Appl. Phys. Lett. 88, 203119 (2006)

    Article  Google Scholar 

  17. N.R. de Tacconi, C. Chenthamarakshan, G. Yogeeswaran, A. Watcharenwong, R. de Zoysa, N. Basit, K. Rajeshwar, J. Phys. Chem. B 110, 25347 (2006)

    Article  Google Scholar 

  18. J. Sun, D. Zhong, D. Gamelin, Energy Environ. Sci. 3, 1252 (2010)

    Article  CAS  Google Scholar 

  19. S. Hong, S. Lee, J. Jang, J. Lee, Energy Environ. Sci. 4, 1781 (2011)

    Article  CAS  Google Scholar 

  20. C.X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D.A. Wheeler, J.Z. Zhang, B.R. Antoun, S.S. Mao, Energy Environ. Sci. 4, 3889 (2011)

    Article  CAS  Google Scholar 

  21. R. Solarska, A. Królikowska, J. Augustyński, Angew. Chem. Int. Ed. 49, 7980 (2010)

    Article  CAS  Google Scholar 

  22. Y. Cong, H. Park, S. Wang, J. Phys. Chem. C 116, 14541 (2012)

    Article  CAS  Google Scholar 

  23. M.W. Kanan, D.G. Nocera, Science 321, 1072 (2008)

    Article  CAS  Google Scholar 

  24. J. Seabold, K. Choi, Chem. Mater. 23, 1105 (2011)

    Article  CAS  Google Scholar 

  25. D. Zhong, M. Cornuz, K. Sivula, Energy Environ. Sci. 4, 1759 (2011)

    Article  CAS  Google Scholar 

  26. A. Kleiman-Shwarsctein, A.B. Laursen, F. Cavalca, W. Tang, S. Dahl, I. Chorkendorff, Chem. Commun. 48, 967 (2012)

    Article  CAS  Google Scholar 

  27. K.S.S. Ma, K. Maeda, R. Abe, K. Domen, Energy Environ. Sci. 5, 8390 (2012)

    Article  CAS  Google Scholar 

  28. I. Shiyanovskaya, M. Hepel, E. Tewksburry, J. New Mat. Electr. Sys. 3, 241 (2000)

    CAS  Google Scholar 

  29. S. Hotchandani, I. Bedja, R.W. Fessenden, and P.V Kamat, Langmuir 10, 17 (1994)

  30. H. Sun, C. Cantalini, L. Lozzi, M. Passacantando, S. Santucci, M. Pelino, Thin Solid Films 287, 258 (1996)

    Article  CAS  Google Scholar 

  31. J. Wen, Z. Zhou, Mater. Chem. Phys. 98, 442 (2006)

    Article  CAS  Google Scholar 

  32. C. Janaky, N.R. de Tacconi, W. Chanmanee, K. Rajeshwar, J. Phys. Chem. C 116, 19145 (2012)

    Article  CAS  Google Scholar 

  33. Q. Mi, A. Zhanaidarova, B. Brunschwig, H.B. Gray, N.S. Lewis, Energy Environ. Sci. 5, 5694 (2012)

    Article  CAS  Google Scholar 

  34. J. Hill, K. Choi, J. Phys. Chem. C 116, 7612 (2012)

    Article  CAS  Google Scholar 

  35. C. Janaky, N.R. de Tacconi, W. Chanmanee, K. Rajeshwar, J. Phys. Chem. C 116, 4234 (2012)

    Article  CAS  Google Scholar 

  36. Y. Lee, J. Suntivich, K. May, J. Phys. Chem. Lett. 3, 399 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C. Janáky gratefully acknowledges support of the European Union under FP7-PEOPLE-2010-IOF, grant number: 274046, as well as from the Hungarian National Development Agency, through the project “TÁMOP-4.2.2.A-11/1/KONV-2012-0047 Biological and Environmental Responses by new functional materials.” We thank colleagues at RenderNet Ltd. for their support in the preparation of the artwork for the manuscript. Finally, we thank the anonymous reviewers for constructive criticisms of an earlier manuscript version.

figure a

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Csaba Janáky or Krishnan Rajeshwar.

Additional information

This paper is dedicated to Prof. Achille De Battisti in recognition of his contributions to the field of electrocatalysis. One of the authors (KR) has fond memories of Prof. De Battisti’s collegiality and friendship and our interactions occurred in many meeting venues and parts of the globe over the years. We wish him the best.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Janáky, C., Chanmanee, W. & Rajeshwar, K. On the Substantially Improved Photoelectrochemical Properties of Nanoporous WO3 Through Surface Decoration with RuO2 . Electrocatalysis 4, 382–389 (2013). https://doi.org/10.1007/s12678-013-0177-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-013-0177-7

Keywords

  • Water splitting
  • Co-catalyst
  • Semiconductor
  • Solar energy
  • Synergy