Skip to main content
Log in

Redox and Oxygen Evolution Electrocatalytic Properties of Nafion and Single-Walled Carbon Nanotube/Hydrous Iron Oxide Composite Films

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Novel Nafion and single-walled carbon nanotube composite hydrous iron oxide electrodes have been fabricated using a simple potential cycling methodology and are examined as oxygen evolution electrocatalyst films. Hydrous oxide materials prepared in this manner are typically quite amorphous in nature. Here, we show, using scanning electron microscopy and cyclic voltammetry, that a more uniform oxide growth can be achieved using a Nafion or carbon nanotube matrix as a template. This templated growth produces oxide films with unique surface morphologies and electrical properties. In particular, the composite films exhibit superior conductivity, as shown by electrochemical impedance spectroscopy, with up to eightfold decrease in charge transfer resistance. The ultimate result is an enhancement in the electrocatalytic performance of the hydrous Fe oxide film. Steady-state polarisation studies on the oxygen evolution reaction show a reduction in overpotential of up to 50 mV for the composite electrodes with a threefold increase in turnover frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.P. Dinga, J. Chem. Educ. 688, 65 (1985)

    Google Scholar 

  2. R. Schlogl, ChemSusChem 209, 3 (2010)

    Google Scholar 

  3. G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Phys. Today 39, 57 (2004)

    Google Scholar 

  4. K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 307, 36 (2010)

    Google Scholar 

  5. H. Tributsch, Int. J. Hydrog. Energy 5911, 33 (2008)

    Google Scholar 

  6. J. Ohi, J. Mater. Res. 3180, 20 (2005)

    Google Scholar 

  7. D.E. Hall, J. Electrochem. Soc. 317, 130 (1983)

    Google Scholar 

  8. H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, Chem. Cat. Chem. 724, 2 (2010)

    Google Scholar 

  9. S. Marinia, P. Salvi, P. Nelli, R. Pesentia, M. Villa, M. Berrettoni, G. Zangaric, Y. Kiros, Electrochim. Acta 384(82) (2012)

  10. A. Michas, F. Andolfatto, M.E.G. Lyons, R. Durand, Key Eng. Mater. 535, 72–74 (1992)

    Google Scholar 

  11. K. Kinoshita, Electrochemical oxygen technology (Wiley, New York, 1992)

    Google Scholar 

  12. M.E.G. Lyons, M.P. Brandon, Int. J. Electrochem. Sci. 1386, 3 (2008)

    Google Scholar 

  13. M.E.G. Lyons, M.P. Brandon, Int. J. Electrochem. Sci. 1425, 3 (2008)

    Google Scholar 

  14. M.E.G. Lyons, M.P. Brandon, Int. J. Electrochem. Sci. 1463, 3 (2008)

    Google Scholar 

  15. T. Kessler, J.R. Vilche, M. Ebert, K. Jüttner, W.J. Lorenz, Chem. Eng. Technol. 263, 14 (1991)

    Google Scholar 

  16. K.K. Lian, D.W. Kirk, S.J. Thorpe, J. Electrochem. Soc. 3704, 142 (1995)

    Google Scholar 

  17. A.M. Fundo, L.M. Abrantes, Russ. J. Electrochem. 1291, 42 (2006)

    Google Scholar 

  18. S.I. Cordorba, R.B. Carbonio, M. Lopez Teijelo, V.A. Macagno, Electrochim. Acta 749, 32 (1987)

    Google Scholar 

  19. Y. Zhang, X. Cao, H. Yuan, W. Zhang, Z. Zhou, Int. J. Hydrogen Energy 529, 24 (1999)

    Google Scholar 

  20. X. Wang, H. Luo, D.R. Zhou, H. Yang, P.J. Sebastian, S.A. Gamboa, Int. J. Hydrogen Energy 967, 29 (2004)

    Google Scholar 

  21. B.S. Yeo, A.T. Bell, J. Phys. Chem. C 8394, 116 (2012)

    Google Scholar 

  22. M.W. Kanan, D.G. Nocera, Science 1072, 321 (2008)

    Google Scholar 

  23. B.S. Yeo, A.T. Bell, J. Am. Chem. Soc. 5587, 133 (2011)

    Google Scholar 

  24. E.B. Castro, C.A. Gervasi, J.R. Vilche, J. Appl. Electrochem. 835, 28 (1998)

    Google Scholar 

  25. M.S. El-Deab, M.I. Awad, A.M. Mohammad, T. Ohsaka, Electrochem. Commun. 2082, 9 (2007)

    Google Scholar 

  26. C.R. Davidson, G. Kissel, S. Srinivasan, J. Electroanal. Chem. 129, 132 (1982)

    Google Scholar 

  27. S.K. Tiwari, S. Samuel, R.N. Singh, G. Poillerat, J.F. Koenig, P. Chartiers, Int. J. Hydrogen Energy 9, 20 (1995)

    Google Scholar 

  28. C. Bocca, A. Barbucci, M. Delucchi, G. Cerisola, Int. J. Hydrogen Energy 21, 24 (1999)

    Google Scholar 

  29. E. Guerrini, M. Piozzini, A. Castelli, A. Colombo, S. Trasatti, J. Solid State Electrochem. 363, 12 (2008)

    Google Scholar 

  30. C. Iwakura, A. Honji, H. Tamura, Electrochim. Acta 1319, 26 (1981)

    Google Scholar 

  31. P. Rasiyah, A.C.C. Tseung, J. Electrochem. Soc. 365, 130 (1983)

    Google Scholar 

  32. S. Palmas, F. Ferrara, A. Vacca, M. Mascia, A.M. Polcaro, Electrochim. Acta 400, 53 (2007)

    Google Scholar 

  33. J.P. Singh, N.K. Singh, R.N. Singh, Int. J. Hydrogen Energy 433, 24 (1999)

    Google Scholar 

  34. R.N. Singh, J.P. Singh, B. Lal, M.J.K. Thomas, S. Bera, Electrochim. Acta 5515, 51 (2006)

    Google Scholar 

  35. J.O.’.M. Bockris, T. Otagawa, J. Phys. Chem. 2960, 87 (1983)

    Google Scholar 

  36. Y. Matsumoto, S. Yamada, T. Hishida, E. Sato, J. Electrochem. Soc. 2360, 127 (1980)

    Google Scholar 

  37. C. Bocca, G. Cerisola, E. Magnone, A. Barbucci, Int. J. Hydrogen Energy 699, 24 (1999)

    Google Scholar 

  38. R.N. Singh, B. Lal, Int. J. Hydrogen Energy 45, 27 (2002)

    Google Scholar 

  39. J. Suntivich, K.J. May, H. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 1383, 334 (2011)

    Google Scholar 

  40. B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, J. Am. Chem. Soc. 4294, 134 (2012)

    Google Scholar 

  41. S. Romain, L. Vigara, A. Llobet, Acc. Chem. Res. 1944, 42 (2009)

    Google Scholar 

  42. T.J. Meyer, Acc. Chem. Res. 163, 22 (1989)

    Google Scholar 

  43. N.D. McDaniel, F.J. Coughlin, L.L. Tinker, S. Bernhard, J. Am. Chem. Soc. 210, 130 (2008)

    Google Scholar 

  44. J.F. Hull, D. Balcells, J.D. Blakemore, C.D. Incarvito, O. Eisenstein, G.W. Brudvig, R.H. Crabtree, J. Am. Chem. Soc. 8730, 131 (2009)

    Google Scholar 

  45. R. Lalrempuia, N.D. McDaniel, H. Müller-Bunz, S. Bernhard, M. Albrecht, Angew. Chem. Int. Ed. 9765, 49 (2010)

    Google Scholar 

  46. C.S. Mullins, V.L. Pecoraro, Coord. Chem. Rev. 416, 252 (2008)

    Google Scholar 

  47. D.J. Wasylenko, C. Ganesamoorthy, J. Borau-Garcia, C.P. Berlinguette, Chem. Commun. 4249, 47 (2011)

    Google Scholar 

  48. D.K. Dogutan, R. McGuire, D.G. Nocera, J. Am. Chem. Soc. 9178, 133 (2011)

    Google Scholar 

  49. Q. Yin, J.M. Tan, C. Besson, Y.V. Geletii, D.G. Musaev, A.E. Kuznetsov, Z. Luo, K.I. Hardcastle, C.L. Hill, Science 342, 328 (2010)

    Google Scholar 

  50. W.C. Ellis, N.D. McDaniel, S. Bernhard, T.J. Collins, J. Am. Chem. Soc. 10990, 132 (2010)

    Google Scholar 

  51. J.L. Fillol, Z. Codolà, I. Garcia-Bosch, L. Gómez, J.J. Pla, M. Costas, Nat. Chem. 807, 3 (2011)

    Google Scholar 

  52. L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nature 418, 4 (2012)

    Google Scholar 

  53. D.A. Butty, F.C. Anson, J. Am. Chem. Soc. 59, 106 (1984)

    Google Scholar 

  54. M. Sharp, D.D. Montgomery, F.C. Anson, J. Electroanal. Chem. 247, 194 (1985)

    Google Scholar 

  55. R.G. Compton, M.J. Day, A. Ledwith, I.I.A. Abdour, J. Chem. Soc. Chem. Commun. (328) (1986)

  56. K.C. Pillai, A.S. Kumar, J.-M. Zen, J. Mol. Cat. A Chem. 277, 160 (2000)

    Google Scholar 

  57. O. Makoto, K.J. Kazuyuki, Chem. Rev. 399, 95 (1995)

    Google Scholar 

  58. R. Ramaraj, A. Kira, M. Kaneko, J. Chem. Soc. Faraday Trans. 1 83, 1539 (1987)

    CAS  Google Scholar 

  59. A.T. Thornton, G.S. Laurence, J. Chem. Soc. Chem. Commun. (408) (1987)

  60. A. Slamo-Schwok, Y. Feitelson, J. Rabani, J. Phys. Chem. 2222, 85 (1981)

    Google Scholar 

  61. Y. Kurimura, M. Nagashima, K. Takato, E. Tsuchida, M. Kaneko, A. Yamada, J. Phys. Chem. 2432, 86 (1982)

    Google Scholar 

  62. K. Kinoshita, M. Yagi, M. Kaneko, J. Mol. Cat. A Chem. 1, 142 (1999)

    Google Scholar 

  63. M. Yagi, K. Kinoshita, M. Kaneko, J. Phys. Chem. 11098, 100 (1996)

    Google Scholar 

  64. M. Yagi, S. Tokita, K. Nagoshi, I. Ogino, M. Kaneko, J. Chem. Soc. Faraday Trans. 2457, 92 (1996)

    Google Scholar 

  65. R.L. Doyle, I.J. Godwin, M.P. Brandon, M.E.G. Lyons, Phys. Chem. Chem. Phys. 13737, 15 (2013)

    Google Scholar 

  66. R.L. Doyle, M.E.G. Lyons, J. Electrochem. Soc. H142, 160 (2013)

    Google Scholar 

  67. R.L. Doyle, M.E.G. Lyons, Phys. Chem. Chem. Phys. 5224, 15 (2013)

    Google Scholar 

  68. M.E.G. Lyons, R.L. Doyle, Int. J. Electrochem. Sci. 9488, 7 (2012)

    Google Scholar 

  69. M.E.G. Lyons, R.L. Doyle, M.P. Brandon, Phys. Chem. Chem. Phys. 21530, 13 (2011)

    Google Scholar 

  70. M.E.G. Lyons, M.P. Brandon, Phys. Chem. Chem. Phys. 2203, 11 (2009)

    Google Scholar 

  71. M.E.G. Lyons, L. Russell, M. O’Brien, R.L. Doyle, I. Godwin, M.P. Brandon, Int. J. Electrochem. Sci. 2710, 7 (2012)

    Google Scholar 

  72. M.E.G. Lyons, R.L. Doyle, I. Godwin, M. O’Brien, L. Russell, J. Electrochem. Soc. H932, 159 (2012)

    Google Scholar 

  73. I.J. Godwin, M.E.G. Lyons, Electrochem. Commun. 39, 32 (2013)

    Google Scholar 

  74. L.D. Burke, E.J.M. O’Sullivan, J. Electroanal. Chem. 155, 117 (1981)

    Google Scholar 

  75. E.S.S. Iyer, A. Datta, J. Phys. Chem. B 8707, 115 (2011)

    Google Scholar 

  76. R. Brimblecombe, J. Chen, P. Wagner, T. Buchhorn, G.C. Dismukes, L. Spiccia, G.F. Swiegers, J. Mol. Cat. A Chem. 1, 338 (2011)

    Google Scholar 

  77. G.J. Yao, A. Kira, M. Kaneko, J. Chem. Soc. Faraday Trans. 1 84, 4451 (1988)

    CAS  Google Scholar 

  78. M.E.G. Lyons, G.P. Keeley, Sensors 1791, 6 (2006)

    Google Scholar 

  79. I. Streeter, G.G. Wildgoose, L. Shao, R.G. Compton, Sensors Actuators B 462, 133 (2008)

    Google Scholar 

  80. M. Chicharro, A. Sanchez, E. Bermejo, A. Zapardiel, M.D. Rubianes, G.A. Rivas, Anal. Chim. Acta 84, 543 (2005)

    Google Scholar 

  81. J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Electroanalysis 225, 14 (2005)

    Google Scholar 

  82. B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Chem. Phys. Lett. 153, 307 (1999)

    Google Scholar 

  83. J. Zhao, A. Buldum, J. Han, J.P. Lu, Phys. Rev. Lett. 1706, 85 (2000)

    Google Scholar 

  84. E. Frackowiak, K. Jurewicz, S. Delpeux, F. Beguin, J. Power. Sources 822, 97–98 (2001)

    Google Scholar 

  85. E. Frackowiak, F. Beguin, Carbon 937, 39 (2001)

    Google Scholar 

  86. J. Prabhuram, T.S. Zhao, Z.X. Liane, R. Chen, Electrochim. Acta 2649, 52 (2007)

    Google Scholar 

  87. J.S. Ye, H.F. Cui, Y. Wen, W.D. Zhang, G.Q. Xu, F.S. Sheu, Microchim. Acta 267, 152 (2006)

    Google Scholar 

  88. G.P. Jin, Y.F. Ding, P.P. Zheng, J. Power. Sources 80, 166 (2007)

    Google Scholar 

  89. M.E.G. Lyons, G.P. Keeley, Chem. Commun. 2529 (2008)

  90. D. Pantarotto, C.D. Partidos, R. Graff, J. Hoebeke, J.P. Briand, M. Prato, A. Bianco, J. Am. Chem. Soc. 6160, 125 (2003)

    Google Scholar 

  91. J. Qu, H. Chen, S. Dong, Electroanalysis 2410, 20 (2008)

    Google Scholar 

  92. J.P. Singh, X.G. Zhang, H.-L. Li, A. Singh, R.N. Singh, Int. J. Electrochem. Sci. 416, 3 (2008)

    Google Scholar 

  93. B.M. Quinn, C. Dekker, S.G. Lemay, J. Am. Chem. Soc. 6146, 127 (2005)

    Google Scholar 

  94. B. Unnikrishnan, Y. Umasankar, S.-M. Chen, C.-C. Ti, Int. J. Electrochem. Sci. 3047, 7 (2012)

    Google Scholar 

  95. M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. (2013). doi:10.1021/ja4027715

    Google Scholar 

  96. M.E.G. Lyons, L.D. Burke, J. Electroanal. Chem. 377, 170 (1984)

    Google Scholar 

  97. P. Aldebert, B. Dreyfus, G. Gebel, N. Nakamura, M. Pineri, F. Volino, J. Phys. Fr. 2101, 49 (1988)

    Google Scholar 

  98. N. Girault, P. Aldebert, M. Pineri, P. Audebert, Synth. Met. 277, 38 (1990)

    Google Scholar 

  99. R.A. Robinson, R.H. Stokes, Electrolyte solutions (Butterworth, London, 1965), p. 492

    Google Scholar 

  100. D. Cibrev, M. Jankulovska, T. Lana-Villarreal, R. Gomez, Int. J. Hyd. Energy 2746, 38 (2013)

    Google Scholar 

  101. H. Willems, A.G.C. Kobussen, J.H.W. De Wit, G.H.J. Broers, J. Electroanal. Chem. 227, 170 (1984)

    Google Scholar 

  102. A.G.C. Kobussen, G.H.J. Broers, J. Electroanal. Chem. 221, 126 (1981)

    Google Scholar 

  103. J. Rossmeisl, A. Logadottir, J.K. Norskov, Chem. Phys. 178, 315 (2005)

    Google Scholar 

  104. J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Norskov, J. Electroanal. Chem. 83, 607 (2007)

    Google Scholar 

  105. X. Shen, Y.A. Small, J. Wang, P.B. Allen, M.V. Fernandez-Serra, M.S. Hybertsen, J.T. Muckerman, J. Phys. Chem. C 13695, 114 (2010)

    Google Scholar 

  106. M. Busch, E. Ahlberg, I. Panas, Phys. Chem. Chem. Phys. 15069, 13 (2011)

    Google Scholar 

  107. L.-P. Wang, Q. Wu, T. Van Voorhis, Inorg. Chem. 4543(49) (2010)

  108. K.A. Mauritz, R.B. Moore, Chem. Rev. 4535, 104 (2004)

    Google Scholar 

Download references

Acknowledgments

This publication has emanated in part from research conducted with the financial support of Science Foundation Ireland (SFI) under grant number SFI/10/IN.1/I2969. We also wish to thank the Advanced Microscopy Laboratory (AML) in the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) at Trinity College Dublin for their help with the SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Doyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyle, R.L., Lyons, M.E.G. Redox and Oxygen Evolution Electrocatalytic Properties of Nafion and Single-Walled Carbon Nanotube/Hydrous Iron Oxide Composite Films. Electrocatalysis 5, 114–124 (2014). https://doi.org/10.1007/s12678-013-0176-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-013-0176-8

Keywords

Navigation