Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Pt–Ir Binary Electrodes for Direct Oxidation of Methanol in Low-Temperature Fuel Cells (DMFCs)

Abstract

In this study, Pt–Ir binary electrodes were prepared by DC magnetron sputtering and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical techniques, and CO stripping. The effect of Ir loading in electrocatalytic activity was also explored. It was found that Ir doping up to 80 % resulted in an increase of the electrochemically active surface (EAS) area and better electrocatalytic performance toward methanol electrooxidation reaction (MOR). The above conclusion was confirmed by CO stripping experiments as well as during oxidation of methanol where the electrodes were used as anodes in a one-compartment cell. The electrode with the lower Pt loading (i.e., 20 %) exhibited better electrocatalytic activity than the pure Pt anode. The observed higher performances of Ir loading electrodes were attributed to the enhanced EAS of the Pt–Ir binary electrodes and the electronic interactions between Pt and Ir atoms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.-M. Léger, J. Power Sources 105, 283 (2002)

  2. 2.

    A. Brouzgou, S.Q. Song, P. Tsiakaras, Appl. Catal. B Environ. 127, 371 (2012)

  3. 3.

    EG & G Services, Inc, and Science Applications International Corporation, Fuel cell handbook, 5th edn. (US Department of Energy, Morgantown, 2000)

  4. 4.

    J.J. Wang, G.P. Yin, H. Liu, R.Y. Li, R.L. Flemming, X.L. Sun, J. Power Sources 194, 668 (2009)

  5. 5.

    C. Lamy, C. Coutanceau, RSC Energy Environ. Ser. 2013(1), 1 (2013)

  6. 6.

    L. Dubau, F. Hahn, C. Coutanceau, J.-M. Léger, C. Lamy, J. Electroanal. Chem. 554, 407 (2003)

  7. 7.

    L. Dubau, C. Coutanceau, E. Garnier, J.-M. Léger, C. Lamy, J. Appl. Electrochem. 33, 419 (2003)

  8. 8.

    M.S. McGovern, P. Waszczuk, A. Wieckowski, Electrochim. Acta 51, 1194 (2006)

  9. 9.

    M. Hepel, I. Kumarihamy, C.J. Zhong, Electrochem. Commun. 8, 1439 (2006)

  10. 10.

    E. Antolini, J.R.C. Salgado, E.R. Gonzalez, Appl. Catal. B 63, 137 (2006)

  11. 11.

    A. Aramata, T. Kodera, M. Masuda, J. Appl. Electrochem. 18, 577 (1988)

  12. 12.

    A.S. Arico, P.L. Antonucci, E. Modica, V. Baglio, H. Kim, V. Antonucci, Electrochim. Acta 47, 3723 (2002)

  13. 13.

    M. Neergat, D. Leveratto, U. Stimming, Fuel Cells 2, 25 (2002)

  14. 14.

    T. Ioroi, N. Kitazuwa, K. Yasuda, Y. Yamamoto, H.J. Takenaka, Appl. Electrochem. 31, 1179 (2001)

  15. 15.

    C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, J. Am. Chem. Soc. 126, 8028 (2004)

  16. 16.

    W.F. Lin, T. Iwasita, W. Vielstich, J. Phys. Chem. B 103, 3250 (1999)

  17. 17.

    S.L. Gojkovic, T.R. Vidakovic, D.R. Durovic, Electrochim. Acta 48, 3607 (2003)

  18. 18.

    J. Solla-Gullón, F.J. Vidal-Iglesias, V. Montiel, A. Aldaz, Electrochim. Acta 49, 5079 (2004)

  19. 19.

    S. Liao, K.A. Holmes, H. Tsaprailis, V.I. Birss, J. Am. Chem. Soc. 128, 350 (2006)

  20. 20.

    J. Luo, M.M. Maye, N.N. Kariuki, L. Wang, P. Njoki, Y. Lin, M. Schadt, H.R. Naslund, C.-J. Zhong, Catal. Today 99, 291 (2005)

  21. 21.

    L. Jiang, G. Sun, S. Sun, J. Liu, S. Tang, H. Li, B. Zhou, Q. Xin, Electrochim. Acta 50, 5384 (2005)

  22. 22.

    S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Nat. Mater. 7, 333 (2008)

  23. 23.

    E.A. Batista, G.R.P. Malpass, A.J. Motheo, T. Iwasita, Electrochem. Commun. 5, 843 (2003)

  24. 24.

    H. Bjorn, E. Kalamaras, E.I. Papaioannou, L. Sygellou, A. Katsaounis, J. International Hydrogen Energy. 38, 15395 (2013)

  25. 25.

    J.R.C. Salgado, J.J. Quintana, L. Calvillo, M.J. Lázaro, P.L. Cabot, I. Esparbé, E. Pastor, Phys. Chem. Chem. Phys. 10, 6796 (2008)

  26. 26.

    B. Habibi, M.H. Pournaghi-Azar, H. Abdolmohammad-Zadeh, H. Razmi, Int. J. Hydrogen Energy 34, 2880 (2009)

  27. 27.

    P. Holt-Hindle, Q. Yi, G. Wu, K. Koczkur, A. Chen, J. Electrochem. Soc. 155(1), K5 (2008)

  28. 28.

    J.-S. Yu, S. Kang, S.B. Yoon, G. Chai, J. Am. Chem. Soc. 124(32), 9382 (2002)

  29. 29.

    E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, E. Budevski, Electrochim. Acta 52, 3889 (2007)

  30. 30.

    A. Hamnett, B. Kennedy, Electrochim. Acta 33, 1613 (1988)

  31. 31.

    R.G. Freitas, E.P. Antunes, E.C. Pereira, Electrochim. Acta 54, 1999 (2009)

  32. 32.

    E.N. Balko, P.H. Nguyen, J. Appl. Electrochem. 21, 678 (1991)

  33. 33.

    C.P. DePauli, S. Trasatti, J. Electroanal. Chem. 396, 161 (1995)

  34. 34.

    N. Rajalakshmi, K.S. Dhathathreyan, Chem. Eng. J. 129, 31 (2007)

  35. 35.

    Z. Yue, E. Yifeng, F. Louzhen, Q. Yongfu, Y. Shihe, Electrochim. Acta 52, 5873 (2007)

  36. 36.

    S. Gottesfeld, S. Srinivasan, J. Electroanal. Chem. 86, 89 (1978)

  37. 37.

    G.A. Tritsaris, J. Rossmeis, J. Phys. Chem. C 116, 11980 (2012)

  38. 38.

    P. Ferrin, M. Mavrikakis, J. Am. Chem. Soc. 131, 14381 (2009)

  39. 39.

    G. Topalov, G. Ganske, E. Lefterova, U. Schnakenberg, E. Slavcheva, Int. J. Hydrogen Energy 36, 15437 (2011)

  40. 40.

    C. Mousty, G. Fóti, C. Comninellis, V. Reid, Electrochim. Acta 45, 451 (1999)

  41. 41.

    M.A. Petit, V. Plichon, J. Electroanal. Chem. 444, 247 (1998)

  42. 42.

    L. Ouattara, S. Fierro, O. Frey, M. Koudelka, C. Comninellis, J. Appl. Electrochem. 39, 1361 (2009)

  43. 43.

    M.K. Jeon, K.R. Lee, H. Daimon, A. Nakahara, S.I. Woo, Catal. Today 132, 123 (2008)

  44. 44.

    A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi, J. Power Sources 105, 13 (2002)

  45. 45.

    T. Ioroi, K. Yasuda, J. Electrochem. Soc. 152, A1917 (2005)

  46. 46.

    R.J. Nichols, A. Bewick, Electrochim. Acta 33, 1691 (1988)

  47. 47.

    V. Bambagioni, C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp, M. Zhiani, J. Power Sources 190, 241 (2009)

  48. 48.

    R.G. Freitas, M.C. Santos, R.T.S. Oliveira, L.O.S. Bulhões, E.C. Pereira, J. Power Sources 158, 164 (2006)

  49. 49.

    H.B. Hassan, Ranliao Huaxue Xuebao/J. Fuel Chem. Technol. 37, 346 (2009)

  50. 50.

    E.H. Calderon, in “Effectiveness factor of thin-layer IrO2 electrocatalyst: influence of catalyst loading and electrode kinetics”, phD Thesis No 4181, EPFL, Switzerland, 2008

  51. 51.

    D.J. Guo, H.L. Li, J. Electroanal. Chem. 573(1), 197 (2004)

  52. 52.

    R. Manohara, J.B. Goodenough, J. Mater. Chem. 2, 875 (1992)

  53. 53.

    S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M.N. Banis, R. Li, S. Ye, S. Knights, G.A. Botton, T.K. Sham, X. Sun, Sci. Rep. 3, 1 (2013)

Download references

Acknowledgments

The authors are thankful to the Laboratory of Inorganic and Analytic Chemistry at University of Patras for the XRD measurements.

Author information

Correspondence to E. I. Papaioannou or A. Katsaounis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Papaioannou, E.I., Siokou, A., Comninellis, C. et al. Pt–Ir Binary Electrodes for Direct Oxidation of Methanol in Low-Temperature Fuel Cells (DMFCs). Electrocatalysis 4, 375–381 (2013). https://doi.org/10.1007/s12678-013-0171-0

Download citation

Keywords

  • Pt–Ir electrodes
  • Methanol oxidation
  • DMFC
  • MOR