, Volume 4, Issue 4, pp 375–381 | Cite as

Pt–Ir Binary Electrodes for Direct Oxidation of Methanol in Low-Temperature Fuel Cells (DMFCs)

  • E. I. Papaioannou
  • A. Siokou
  • Ch. Comninellis
  • A. Katsaounis


In this study, Pt–Ir binary electrodes were prepared by DC magnetron sputtering and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical techniques, and CO stripping. The effect of Ir loading in electrocatalytic activity was also explored. It was found that Ir doping up to 80 % resulted in an increase of the electrochemically active surface (EAS) area and better electrocatalytic performance toward methanol electrooxidation reaction (MOR). The above conclusion was confirmed by CO stripping experiments as well as during oxidation of methanol where the electrodes were used as anodes in a one-compartment cell. The electrode with the lower Pt loading (i.e., 20 %) exhibited better electrocatalytic activity than the pure Pt anode. The observed higher performances of Ir loading electrodes were attributed to the enhanced EAS of the Pt–Ir binary electrodes and the electronic interactions between Pt and Ir atoms.


Pt–Ir electrodes Methanol oxidation DMFC MOR 



The authors are thankful to the Laboratory of Inorganic and Analytic Chemistry at University of Patras for the XRD measurements.


  1. 1.
    C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.-M. Léger, J. Power Sources 105, 283 (2002)CrossRefGoogle Scholar
  2. 2.
    A. Brouzgou, S.Q. Song, P. Tsiakaras, Appl. Catal. B Environ. 127, 371 (2012)CrossRefGoogle Scholar
  3. 3.
    EG & G Services, Inc, and Science Applications International Corporation, Fuel cell handbook, 5th edn. (US Department of Energy, Morgantown, 2000)Google Scholar
  4. 4.
    J.J. Wang, G.P. Yin, H. Liu, R.Y. Li, R.L. Flemming, X.L. Sun, J. Power Sources 194, 668 (2009)CrossRefGoogle Scholar
  5. 5.
    C. Lamy, C. Coutanceau, RSC Energy Environ. Ser. 2013(1), 1 (2013)Google Scholar
  6. 6.
    L. Dubau, F. Hahn, C. Coutanceau, J.-M. Léger, C. Lamy, J. Electroanal. Chem. 554, 407 (2003)CrossRefGoogle Scholar
  7. 7.
    L. Dubau, C. Coutanceau, E. Garnier, J.-M. Léger, C. Lamy, J. Appl. Electrochem. 33, 419 (2003)CrossRefGoogle Scholar
  8. 8.
    M.S. McGovern, P. Waszczuk, A. Wieckowski, Electrochim. Acta 51, 1194 (2006)CrossRefGoogle Scholar
  9. 9.
    M. Hepel, I. Kumarihamy, C.J. Zhong, Electrochem. Commun. 8, 1439 (2006)CrossRefGoogle Scholar
  10. 10.
    E. Antolini, J.R.C. Salgado, E.R. Gonzalez, Appl. Catal. B 63, 137 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Aramata, T. Kodera, M. Masuda, J. Appl. Electrochem. 18, 577 (1988)CrossRefGoogle Scholar
  12. 12.
    A.S. Arico, P.L. Antonucci, E. Modica, V. Baglio, H. Kim, V. Antonucci, Electrochim. Acta 47, 3723 (2002)CrossRefGoogle Scholar
  13. 13.
    M. Neergat, D. Leveratto, U. Stimming, Fuel Cells 2, 25 (2002)CrossRefGoogle Scholar
  14. 14.
    T. Ioroi, N. Kitazuwa, K. Yasuda, Y. Yamamoto, H.J. Takenaka, Appl. Electrochem. 31, 1179 (2001)CrossRefGoogle Scholar
  15. 15.
    C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, J. Am. Chem. Soc. 126, 8028 (2004)CrossRefGoogle Scholar
  16. 16.
    W.F. Lin, T. Iwasita, W. Vielstich, J. Phys. Chem. B 103, 3250 (1999)CrossRefGoogle Scholar
  17. 17.
    S.L. Gojkovic, T.R. Vidakovic, D.R. Durovic, Electrochim. Acta 48, 3607 (2003)CrossRefGoogle Scholar
  18. 18.
    J. Solla-Gullón, F.J. Vidal-Iglesias, V. Montiel, A. Aldaz, Electrochim. Acta 49, 5079 (2004)CrossRefGoogle Scholar
  19. 19.
    S. Liao, K.A. Holmes, H. Tsaprailis, V.I. Birss, J. Am. Chem. Soc. 128, 350 (2006)Google Scholar
  20. 20.
    J. Luo, M.M. Maye, N.N. Kariuki, L. Wang, P. Njoki, Y. Lin, M. Schadt, H.R. Naslund, C.-J. Zhong, Catal. Today 99, 291 (2005)CrossRefGoogle Scholar
  21. 21.
    L. Jiang, G. Sun, S. Sun, J. Liu, S. Tang, H. Li, B. Zhou, Q. Xin, Electrochim. Acta 50, 5384 (2005)CrossRefGoogle Scholar
  22. 22.
    S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Nat. Mater. 7, 333 (2008)CrossRefGoogle Scholar
  23. 23.
    E.A. Batista, G.R.P. Malpass, A.J. Motheo, T. Iwasita, Electrochem. Commun. 5, 843 (2003)CrossRefGoogle Scholar
  24. 24.
    H. Bjorn, E. Kalamaras, E.I. Papaioannou, L. Sygellou, A. Katsaounis, J. International Hydrogen Energy. 38, 15395 (2013)Google Scholar
  25. 25.
    J.R.C. Salgado, J.J. Quintana, L. Calvillo, M.J. Lázaro, P.L. Cabot, I. Esparbé, E. Pastor, Phys. Chem. Chem. Phys. 10, 6796 (2008)CrossRefGoogle Scholar
  26. 26.
    B. Habibi, M.H. Pournaghi-Azar, H. Abdolmohammad-Zadeh, H. Razmi, Int. J. Hydrogen Energy 34, 2880 (2009)CrossRefGoogle Scholar
  27. 27.
    P. Holt-Hindle, Q. Yi, G. Wu, K. Koczkur, A. Chen, J. Electrochem. Soc. 155(1), K5 (2008)CrossRefGoogle Scholar
  28. 28.
    J.-S. Yu, S. Kang, S.B. Yoon, G. Chai, J. Am. Chem. Soc. 124(32), 9382 (2002)CrossRefGoogle Scholar
  29. 29.
    E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, E. Budevski, Electrochim. Acta 52, 3889 (2007)CrossRefGoogle Scholar
  30. 30.
    A. Hamnett, B. Kennedy, Electrochim. Acta 33, 1613 (1988)CrossRefGoogle Scholar
  31. 31.
    R.G. Freitas, E.P. Antunes, E.C. Pereira, Electrochim. Acta 54, 1999 (2009)CrossRefGoogle Scholar
  32. 32.
    E.N. Balko, P.H. Nguyen, J. Appl. Electrochem. 21, 678 (1991)CrossRefGoogle Scholar
  33. 33.
    C.P. DePauli, S. Trasatti, J. Electroanal. Chem. 396, 161 (1995)CrossRefGoogle Scholar
  34. 34.
    N. Rajalakshmi, K.S. Dhathathreyan, Chem. Eng. J. 129, 31 (2007)CrossRefGoogle Scholar
  35. 35.
    Z. Yue, E. Yifeng, F. Louzhen, Q. Yongfu, Y. Shihe, Electrochim. Acta 52, 5873 (2007)CrossRefGoogle Scholar
  36. 36.
    S. Gottesfeld, S. Srinivasan, J. Electroanal. Chem. 86, 89 (1978)CrossRefGoogle Scholar
  37. 37.
    G.A. Tritsaris, J. Rossmeis, J. Phys. Chem. C 116, 11980 (2012)CrossRefGoogle Scholar
  38. 38.
    P. Ferrin, M. Mavrikakis, J. Am. Chem. Soc. 131, 14381 (2009)CrossRefGoogle Scholar
  39. 39.
    G. Topalov, G. Ganske, E. Lefterova, U. Schnakenberg, E. Slavcheva, Int. J. Hydrogen Energy 36, 15437 (2011)CrossRefGoogle Scholar
  40. 40.
    C. Mousty, G. Fóti, C. Comninellis, V. Reid, Electrochim. Acta 45, 451 (1999)CrossRefGoogle Scholar
  41. 41.
    M.A. Petit, V. Plichon, J. Electroanal. Chem. 444, 247 (1998)CrossRefGoogle Scholar
  42. 42.
    L. Ouattara, S. Fierro, O. Frey, M. Koudelka, C. Comninellis, J. Appl. Electrochem. 39, 1361 (2009)CrossRefGoogle Scholar
  43. 43.
    M.K. Jeon, K.R. Lee, H. Daimon, A. Nakahara, S.I. Woo, Catal. Today 132, 123 (2008)CrossRefGoogle Scholar
  44. 44.
    A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi, J. Power Sources 105, 13 (2002)CrossRefGoogle Scholar
  45. 45.
    T. Ioroi, K. Yasuda, J. Electrochem. Soc. 152, A1917 (2005)CrossRefGoogle Scholar
  46. 46.
    R.J. Nichols, A. Bewick, Electrochim. Acta 33, 1691 (1988)CrossRefGoogle Scholar
  47. 47.
    V. Bambagioni, C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp, M. Zhiani, J. Power Sources 190, 241 (2009)CrossRefGoogle Scholar
  48. 48.
    R.G. Freitas, M.C. Santos, R.T.S. Oliveira, L.O.S. Bulhões, E.C. Pereira, J. Power Sources 158, 164 (2006)CrossRefGoogle Scholar
  49. 49.
    H.B. Hassan, Ranliao Huaxue Xuebao/J. Fuel Chem. Technol. 37, 346 (2009)CrossRefGoogle Scholar
  50. 50.
    E.H. Calderon, in “Effectiveness factor of thin-layer IrO2 electrocatalyst: influence of catalyst loading and electrode kinetics”, phD Thesis No 4181, EPFL, Switzerland, 2008Google Scholar
  51. 51.
    D.J. Guo, H.L. Li, J. Electroanal. Chem. 573(1), 197 (2004)Google Scholar
  52. 52.
    R. Manohara, J.B. Goodenough, J. Mater. Chem. 2, 875 (1992)CrossRefGoogle Scholar
  53. 53.
    S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M.N. Banis, R. Li, S. Ye, S. Knights, G.A. Botton, T.K. Sham, X. Sun, Sci. Rep. 3, 1 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Institute of Chemical Engineering Sciences (FORTH/ICE-HT)PatrasGreece
  3. 3.Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations