Electrocatalysis

, Volume 4, Issue 3, pp 179–186 | Cite as

Platinum Ordered Porous Electrodes: Developing a Platform for Fundamental Electrochemical Characterization

  • Brandy Kinkead
  • Julia van Drunen
  • Michael T. Y. Paul
  • Katie Dowling
  • Gregory Jerkiewicz
  • Byron D. Gates
Article

Abstract

High surface area platinum electrodes with an ordered porous structure (Pt-OP electrodes) have been prepared and characterized by electrochemical methods. This study builds a foundation upon which we can seek an in-depth understanding of the limitations and design considerations to make efficient and stable Pt-OP electrodes for use in electrochemical applications. A set of Pt-OP electrodes were prepared by controlled electrodeposition of Pt through a self-assembled array of spherical particles and subsequent removal of the spherical templates by solvent extraction. The preparation method was shown to be reproducible and the resulting electrodes were found to have clean Pt surfaces and a large electrochemical surface area (A ecsa) resulting from both the porous structure, as well as the nano- and micro-scale surface roughness. Additionally, the Pt-OP electrodes exhibit a surface area enhancement comparable to commercially available electrocatalysts. In summary, the Pt-OP electrodes prepared herein show properties of interest for both gaining fundamental insights into electrocatalytic processes and for use in applications that would benefit from enhanced electrochemical response.

Keywords

Electrocatalysis Platinum Inverse opal Cyclic voltammetry Electron microscopy X-ray diffraction Electrochemical surface area 

Notes

Acknowledgments

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs Program (B.D. Gates), and the Simons Foundation. This work made use of 4D LABS shared facilities supported by the Canada Foundation for Innovation, British Columbia Knowledge Development Fund, Western Economic Diversification Canada, and Simon Fraser University. We would like to thank Dr. Dev Sharma and Paul Mulyk for their assistance with FAAS measurements.

Supplementary material

12678_2013_145_Fig6_ESM.jpg (14 kb)

SI Fig. 1 (JPEG 14 kb)

12678_2013_145_MOESM1_ESM.tif (4.1 mb)
High resolution image (TIFF 4248 kb)

References

  1. 1.
    A. Kloke, F. von Stetten, R. Zengerle, S. Kerzenmacher, Adv. Mater. 23, 4976 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Zhang, C.M. Li, Chem. Soc. Rev. 41, 7016 (2012)CrossRefGoogle Scholar
  3. 3.
    B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001)CrossRefGoogle Scholar
  4. 4.
    D. Chen et al., Electrocatalysis 2, 207 (2011)CrossRefGoogle Scholar
  5. 5.
    C.M. Li, Chem. Soc. Rev. 41, 7016 (2012)CrossRefGoogle Scholar
  6. 6.
    Y.J. Lee, J.Y. Park, J. Korean Phys. Soc. 58, 1505 (2011)CrossRefGoogle Scholar
  7. 7.
    G. Korotcenkov, S. Do Han, J.R. Stetter, Chem. Rev. 109, 1402 (2009)CrossRefGoogle Scholar
  8. 8.
    Y.-Y. Song, D. Zhang, W. Gao, X.-H. Xia, Chem. Eur. J. 11, 2177 (2005)CrossRefGoogle Scholar
  9. 9.
    J.H. Yuan, K. Wang, X.H. Xia, Adv. Func. Mater. 15, 803 (2005)CrossRefGoogle Scholar
  10. 10.
    S.A.G. Evans et al., Anal. Chem. 74, 1322 (2002)CrossRefGoogle Scholar
  11. 11.
    D.-J. Guo, Y. Ding, Electroanalysis 24, 2035 (2012)CrossRefGoogle Scholar
  12. 12.
    E. Antolini, T. Lopes, E.R. Gonzalez, J. Alloys Compd. 461, 253 (2008)CrossRefGoogle Scholar
  13. 13.
    M.K. Debe, Nature 486, 43 (2012)CrossRefGoogle Scholar
  14. 14.
    J.D. Aiken III, R.G. Finke, J. Mol. Catal. A Chem. 145, 1 (1999)CrossRefGoogle Scholar
  15. 15.
    M.K. Debe, ECS Trans. 45, 47 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Giorgi et al., J. Fuel Cell Sci. Tech. 8 (2011)Google Scholar
  17. 17.
    A. Bonakdarpour, M.D. Fleischauer, M.J. Brett, J.R. Dahn, Appl. Catal. A 349, 110 (2008)CrossRefGoogle Scholar
  18. 18.
    B.E. Hayden, D. Pletcher, J.P. Suchsland, L.J. Williams, PCCP 11, 9141 (2009)CrossRefGoogle Scholar
  19. 19.
    C. Guizard, A. Princivalle, Catal. Today 146, 367 (2009)CrossRefGoogle Scholar
  20. 20.
    G.S. Attard, C.G. Goltner, J.M. Corker, S. Henke, R.H. Templer, Angew. Chem. Int. Ed. 36, 1315 (1997)CrossRefGoogle Scholar
  21. 21.
    S.S. Mahshid, S. Mahshid, A. Dolati, M. Ghorbani, L.X. Yang, S.L. Luo, Q.Y. Cai, Electrochim. Acta 58, 551 (2011)CrossRefGoogle Scholar
  22. 22.
    S.M. Choi, J.H. Kim, J.Y. Jung, E.Y. Yoon, W.B. Kim, Electrochim. Acta 53, 5804 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Yang, F. Qu, Y. Lu, Y. He, G. Shen, R. Yu, Biomaterials 27, 5944 (2006)CrossRefGoogle Scholar
  24. 24.
    P.N. Bartlett, J.J. Baumberg, P.R. Birkin, M.A. Ghanem, M.C. Netti, Chem. Mater. 14, 2199 (2002)CrossRefGoogle Scholar
  25. 25.
    P.N. Bartlett, P.R. Birkin, M.A. Ghanem, Chem. Commun., 1671 (2000), C. Chen, Y. Li, S. Liu. J. Electroanal. Chem. 632, 14 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Du, K. Lv, B. Su, N. Zhang, C. Wang, J. Appl. Electrochem. 39, 2409 (2009)CrossRefGoogle Scholar
  27. 27.
    Y.-J. Huang, C.-H. Lai, P.-W. Wu, L.-Y. Chen, J. Electrochem. Soc. 157, P18 (2010)CrossRefGoogle Scholar
  28. 28.
    Y. Liu, J. Chen, V. Misoska, G.F. Sweigers, G.G. Wallace, Mater. Lett. 61, 3 (2007)Google Scholar
  29. 29.
    E. Mine, M. Shirai, J. Porous. Mater. 16, 185 (2009)CrossRefGoogle Scholar
  30. 30.
    T. Song et al., Energy Environ. Sci. 5, 9028 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Bai, W.W. Yang, Y. Sun, C.Q. Sun, Sensors Actuator. B 134, 471 (2008)CrossRefGoogle Scholar
  32. 32.
    C. Chen, Y. Li, S. Liu, J. Electroanal. Chem. 632, 14 (2009)CrossRefGoogle Scholar
  33. 33.
    M.M. Dimos, G.J. Blanchard, J. Phys. Chem. C 114, 13 (2010)CrossRefGoogle Scholar
  34. 34.
    G.D. Moon, T.I. Lee, B. Kim, G. Chae, J. Kim, S. Kim, J.-M. Myoung, U. Jeong, ACS Nano 5, 12 (2011)Google Scholar
  35. 35.
    Y.-J. Song, J.-K. Oh, K.-W. Park, Nanotechnology 19, 6 (2008)Google Scholar
  36. 36.
    B.E. Conway, H. Angerstein-Kozlowska, W.B.A. Sharp, E.E. Criddle, Anal. Chem. 45, 1331 (1973)CrossRefGoogle Scholar
  37. 37.
    E. Yeager, J. O'M. Bockris, B. E. Conway (eds.), Comprehensive Treatise of Electrochemistry, vol. 9 (Plenum, New York, 1984), Chapter 1Google Scholar
  38. 38.
    G. Jerkiewicz, Electrocatalysis 1, 179–199 (2010)CrossRefGoogle Scholar
  39. 39.
    G. Jerkiewicz, G. Vatankhah, J. Lessard, M.P. Soriaga, Y.-S. Park, Electrochim. Acta 49, 1451–1459 (2004)Google Scholar
  40. 40.
    R. Woods, J. Electroanal. Chem. 49, 217–226 (1974)CrossRefGoogle Scholar
  41. 41.
    Y. Xia, B. Gates, Y. Yin, Y. Lu, Adv. Mater. 12, 20 (2000)CrossRefGoogle Scholar
  42. 42.
    G. Tremiliosi-Filho, G. Jerkiewicz, B.E. Conway, Langmuir 8, 658–667 (1992)CrossRefGoogle Scholar
  43. 43.
    U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)CrossRefGoogle Scholar
  44. 44.
    A.A. Topalov, I. Katsounaros, M. Auinger, S. Cherevko, J.C. Meier, S.O. Klemm, K.J.J. Mayrhofer, Angew. Chem. Int. Ed. 51, 12613–12615 (2012)CrossRefGoogle Scholar
  45. 45.
    B. Gates, Y. Yin, Y. Xia, Chem. Mater. 11, 9 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Brandy Kinkead
    • 1
  • Julia van Drunen
    • 2
  • Michael T. Y. Paul
    • 1
  • Katie Dowling
    • 1
  • Gregory Jerkiewicz
    • 2
  • Byron D. Gates
    • 1
  1. 1.Department of Chemistry and 4D LABSSimon Fraser UniversityBurnabyCanada
  2. 2.Department of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations