Skip to main content
Log in

Reduction of Nitrate Ions at Rh-Modified Ni Foam Electrodes

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Commercial Ni foams were modified by spontaneous deposition of Rh nanoparticles, achieved by immersion of foam samples in acid, deaerated Na3RhCl6 solutions, at open circuit. The surface area of the Rh deposits was estimated, for different Rh loadings, by measuring the H adsorption/desorption charge. The surface area per unit Rh mass was found to exceed 50 m2 g−1, for loading values below 2 mg cm−3. The Rh-modified Ni foam electrodes were used as cathodes for the reduction of nitrate ions, and showed good catalytic activity, increasing with the Rh loading in a sublinear way; thus, the mass activity of the electrodes was higher at low loading. Prolonged electrolyses showed that the Rh-modified Ni foam electrodes underwent only moderate poisoning. Ion chromatography was used to assess the reaction products: irrespective of the Rh loading, ammonia was the main product, and nitrite accounted only for a few percent of the reduced nitrate. The beneficial effect of forcing a solution flow through the foam pores on the nitrate reduction current was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.E. Sioda, Electrochim. Acta. 13, 1559 (1968)

    Article  CAS  Google Scholar 

  2. R. Alkire, B. Gracon, J. Electrochem. Soc. 122, 1594 (1975)

    Article  CAS  Google Scholar 

  3. R.J. Marshall, F.C. Walsh, Surf. Technol. 24, 45 (1985)

    Article  CAS  Google Scholar 

  4. J.M. Marracino, F. Coeuret, S. Langlois, Electrochim. Acta 32, 1303 (1987)

    Article  CAS  Google Scholar 

  5. J. González–Garcia, V. Montiel, A. Aldaz, J.A. Conesa, J.R. Pérez, G. Codina, Ind. Eng. Chem. Res. 37, 4501 (1998)

    Article  Google Scholar 

  6. R. Menini, Y.M. Henuset, J. Fournier, J. Appl. Electrochem. 35, 625 (2005)

    Article  CAS  Google Scholar 

  7. M. Matlosz, J. Newman, J. Electrochem. Soc. 133, 1850 (1986)

    Article  CAS  Google Scholar 

  8. J.M. Friedrich, C. Ponce–de–León, G.W. Reade, F.C. Walsh, Electroanal. Chem. 561, 203 (2004)

    Article  CAS  Google Scholar 

  9. B.K. Ferreira, Miner. Process. Ext. Metall. Rev. 29, 330 (2008)

    Article  CAS  Google Scholar 

  10. I. Sirés, E. Brillas, Environ. Int. 40, 212 (2012)

    Article  Google Scholar 

  11. C. Carlesi Jara, D. Fino, V. Specchia, G. Saracco, P. Spinelli, Appl. Catal. B Environ. 70, 479 (2007)

    Article  CAS  Google Scholar 

  12. J. Muff, C.D. Andersen, R. Erichsen, E.G. Soegaard, Electrochim. Acta 54, 2062 (2009)

    Article  CAS  Google Scholar 

  13. J.M. Skowronski, A. Wazny, J. Sol. Struct. Electrochem. 9, 890 (2005)

    Article  CAS  Google Scholar 

  14. W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin, J. Power Sources 160, 1420 (2006)

    Article  CAS  Google Scholar 

  15. W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin, Electrochim. Acta 52, 9 (2006)

    Article  Google Scholar 

  16. F. Bidault, D.J.L. Brett, P.H. Middleton, N. Abson, N.P. Brandon, Int. J. Hydrogen Energy 34, 6799 (2009)

    Article  CAS  Google Scholar 

  17. F. Bidault, D.J.L. Brett, P.H. Middleton, N. Abson, N.P. Brandon, Int. J. Hydrogen Energy 35, 1783 (2010)

    Article  CAS  Google Scholar 

  18. Y.-L. Wang, Y.-Q. Zhao, C.-L. Xu, D.-D. Zhao, M.-W. Xu, Z.-X. Su, H.-L. Li, J. Power Sources 195, 6496 (2010)

    Article  CAS  Google Scholar 

  19. Y. Yamauchi, M. Kumatsu, A. Takai, R. Sebata, M. Sawada, T. Momma, M. Fuziwara, T. Osaka, K. Kuroda, Electrochim. Acta 53, 604 (2007)

    Article  CAS  Google Scholar 

  20. D. Cao, Y. Guo, G. Wang, R. Miao, Y. Liu, Int. J. Hydrogen Energy 35, 807 (2010)

    Article  CAS  Google Scholar 

  21. Y. Cheng, Y. Liu, D. Cao, G. Wang, Y. Gao, J. Power Sources 196, 3124 (2011)

    Article  CAS  Google Scholar 

  22. J.M. Skowronski, A. Czerwinski, T. Rozmanowski, Z. Rogulski, P. Krawczyk, Electrochim. Acta 52, 5677 (2007)

    Article  CAS  Google Scholar 

  23. B. Yang, G. Yu, D. Shuai, Chemosphere 67, 1361 (2007)

    Article  CAS  Google Scholar 

  24. B. Yang, G. Yu, J. Huang, Environ. Sci. Technol. 41, 7503 (2007)

    Article  CAS  Google Scholar 

  25. E. Verlato, S. Cattarin, N. Comisso, A. Gambirasi, M. Musiani, L. Vázquez–Gómez, Electrocatalysis 3, 48 (2012)

    Article  CAS  Google Scholar 

  26. S. Fiameni, I. Herraiz–Cardona, M. Musiani, V. Pérez–Herranz, L. Vázquez–Gómez, E. Verlato, Int. J. Hydrogen Energy 37, 10507 (2012)

    Article  CAS  Google Scholar 

  27. H. Li, D.H. Robertson, J.Q. Chambers, D.T. Hobbs, J. Electrochem. Soc. 135, 1154 (1988)

    Article  CAS  Google Scholar 

  28. H. Li, D.H. Robertson, J.Q. Chambers, D.T. Hobbs, J. Appl. Electrochem. 18, 454 (1988)

    Article  CAS  Google Scholar 

  29. G.E. Dima, A.C.A. de Vooys, M.T.M. Koper, J. Electroanal. Chem. 554–555, 15 (2003)

    Article  Google Scholar 

  30. O. Brylev, M. Sarrazin, D. Bélanger, L. Roué, Appl. Catal., B 64, 243 (2006)

    Article  CAS  Google Scholar 

  31. O. Brylev, M. Sarrazin, L. Roué, D. Bélanger, Electrochim. Acta 52, 6237 (2007)

    Article  CAS  Google Scholar 

  32. P.M. Tucker, M.J. Waite, B.E. Hayden, J. Appl. Electrochem. 34, 781 (2007)

    Article  Google Scholar 

  33. V. Rosca, M. Duca, M.T. de Groot, M.T.M. Koper, Chem. Rev. 109, 2209 (2009)

    Article  CAS  Google Scholar 

  34. M. Duca, B. van der Klugt, M.A. Hasnat, M. Machida, M.T.M. Koper, J. Catal. 275, 61 (2010)

    Article  CAS  Google Scholar 

  35. N. Comisso, S. Cattarin, S. Fiameni, R. Gerbasi, L. Mattarozzi, M. Musiani, L. Vázquez- Gómez, E. Verlato, Electrochem. Comm. 25, 91 (2012)

  36. L. Mattarozzi, S. Cattarin, N. Comisso, P. Guerriero, M. Musiani, L. Vázquez-Gómez, E. Verlato, Electrochim. Acta 89, 488 (2013)

    Article  CAS  Google Scholar 

  37. S. Cimino, L. Lisi, G. Mancino, M. Musiani, L. Vázquez–Gómez, E. Verlato, Int. J. Hydrogen Energy 37, 17040 (2012)

    Article  CAS  Google Scholar 

  38. E. Benguerel, G.P. Demopoulos, G.B. Harris, Hydrometallurgy 40, 135 (1996)

    Article  CAS  Google Scholar 

  39. R. Woods, Chemisorption at electrodes: hydrogen and oxygen on noble metals and their alloys, in Electroanalytical Chemistry, ed. by A.J. Bard, vol. 9 (Marcel Dekker, New York, 1976), p. 1

    Google Scholar 

  40. B. Conway, in Impedance Spectroscopy, ed. by E. Barsoukov, J.R. Macdonal (Wiley, Hoboken, 2005), pp. 469

    Google Scholar 

  41. J.D. Genders, D. Hartsough, D.T. Hobbs, J. Appl. Electrochem. 26, 1 (1988)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Italian Ministry for Economic Development (MSE),MSE-CNR Agreement on National Electrical System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Musiani.

Additional information

This paper is dedicated to Prof. Achille De Battisti, on the occasion of his retirement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verlato, E., Cattarin, S., Comisso, N. et al. Reduction of Nitrate Ions at Rh-Modified Ni Foam Electrodes. Electrocatalysis 4, 203–211 (2013). https://doi.org/10.1007/s12678-013-0129-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-013-0129-2

Keywords

Navigation