Electrocatalysis

, Volume 4, Issue 1, pp 49–55

The Influence of the Cation on the Oxygen Reduction and Evolution Activities of Oxide Surfaces in Alkaline Electrolyte

Article

Abstract

Understanding the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) mechanisms is critical to the design of future electrocatalysts for fuel cells, electrolyzers, and metal–air batteries. As parts of the effort to elucidate the reaction mechanisms, we report the influence of the cationic species on the ORR/OER activity of select transition metal oxide catalysts in alkaline solutions. Specifically, we use Li+, Na+, and K+-containing electrolytes to assess the role of the cation on the ORR activity of Pt nanoparticles and LaMnO3+δ, as well as the OER activity of rutile IrO2 and Ba0.5Sr0.5Co0.8Fe0.2O3-δ. We found that all these benchmark electrocatalysts share the same cation trends, where the presence of the smaller cation (Li+) always leads to lower activity. We argue that this finding represents the possible cation influence on the ORR/OER intermediate stabilization.

Keywords

Electrochemistry Transition metal oxide Oxygen reduction reaction (ORR) Oxygen evolution reaction (OER) Fuel cell Water splitting Metal–air battery 

Reference

  1. 1.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal., B 56, 9–35 (2005)Google Scholar
  2. 2.
    T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Chem Rev 110, 6474–6502 (2010)CrossRefGoogle Scholar
  3. 3.
    M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Chem Rev 110, 6446–6473 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Dotan, K. Sivula, M. Gratzel, A. Rothschild, S.C. Warren, Energy Environ. Sci. 4, 958–964 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Armand, J.M. Tarascon, Nature 451, 652–657 (2008)CrossRefGoogle Scholar
  6. 6.
    J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108, 17886–17892 (2004)CrossRefGoogle Scholar
  7. 7.
    J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Norskov, J. Electroanal. Chem. 607, 83–89 (2007)CrossRefGoogle Scholar
  8. 8.
    I.C. Man, H.Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martinez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Norskov, J. Rossmeisl, Chem. Cat. Chem. 3, 1159–1165 (2011)Google Scholar
  9. 9.
    J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Norskov, Nature Chem. 1, 552–556 (2009)CrossRefGoogle Scholar
  10. 10.
    I.E.L. Stephens, A.S. Bondarenko, F.J. Perez-Alonso, F. Calle-Vallejo, L. Bech, T.P. Johansson, A.K. Jepsen, R. Frydendal, B.P. Knudsen, J. Rossmeisl, I. Chorkendorff, J. Am, Chem. Soc. 133, 5485–5491 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Rossmeisl, E. Skulason, M.E. Bjorketun, V. Tripkovic, J.K. Norskov, Chem. Phys. Lett. 466, 68–71 (2008)CrossRefGoogle Scholar
  12. 12.
    D. Strmcnik, K. Kodama, D. van der Vliet, J. Greeley, V.R. Stamenkovic, N.M. Markovic, Nature Chem. 1, 466–472 (2009)CrossRefGoogle Scholar
  13. 13.
    D. Strmcnik, D.F. van der Vliet, K.C. Chang, V. Komanicky, K. Kodama, H. You, V.R. Stamenkovic, N.M. Markovic, J. Phys. Chem. Lett. 2, 2733–2736 (2011)CrossRefGoogle Scholar
  14. 14.
    J.X. Wang, N.M. Markovic, R.R. Adzic, J. Phys. Chem. B 108, 4127–4133 (2004)CrossRefGoogle Scholar
  15. 15.
    S. Thomas, Y.E. Sung, H.S. Kim, A. Wieckowski, J. Phys. Chem. 100, 11726–11735 (1996)CrossRefGoogle Scholar
  16. 16.
    Q.G. He, X.F. Yang, W. Chen, S. Mukerjee, B. Koel, S.W. Chen, Phys. Chem. Chem. Phys. 12, 12544–12555 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Kajii, T. Ohsaka, F. Kitamura, Electrochem. Commun. 12, 970–972 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nature. Chem. 3, 546–550 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Suntivich, H.A. Gasteiger, N. Yabuuchi, Y. Shao-horn, J. Electrochem. Soc. 157 (2010)Google Scholar
  20. 20.
    J. Suntivich, K.J. May, J.B. Goodenough, H.A. Gasteiger, Y. Shao-Horn, Science 334, 1383–1385 (2011)CrossRefGoogle Scholar
  21. 21.
    D. Strmcnik, M. Escudero-Escribano, K. Kodama, V.R. Stamenkovic, A. Cuesta, N.M. Markovic, Nature Chem. 2, 880–885 (2010)CrossRefGoogle Scholar
  22. 22.
    M. Yuasa, M. Nishida, T. Kida, N. Yamazoe, K. Shimanoe, J. Electrochem. Soc. 158, A605–A610 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Yuasa, N. Yamazoe, K. Shimanoe, J. Electrochem. Soc. 158, A411–A416 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Trasatti, J. Electroanal. Chem. 111, 125–131 (1980)CrossRefGoogle Scholar
  25. 25.
    Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 399–404 (2012)Google Scholar
  26. 26.
    S. Chen, W.C. Sheng, N. Yabuuchi, P.J. Ferreira, L.F. Allard, Y. Shao-Horn, J. Phys. Chem. C 113, 1109–1125 (2009)CrossRefGoogle Scholar
  27. 27.
    U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, J. Electroanal. Chem. 495, 134–145 (2001)CrossRefGoogle Scholar
  28. 28.
    R. Subbaraman, D. Strmcnik, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, Chem. Phys. Chem. 11, 2825–2833 (2010)CrossRefGoogle Scholar
  29. 29.
    R. Subbaraman, D. Strmcnik, V. Stamenkovic, N.M. Markovic, J. Phys. Chem. C 114, 8414–8422 (2010)CrossRefGoogle Scholar
  30. 30.
    J.O. Bockris, T. Otagawa, J. Phys. Chem. 87, 2960–2971 (1983)CrossRefGoogle Scholar
  31. 31.
    J.O. Bockris, T. Otagawa, J. Electrochem. Soc. 131, 290–302 (1984)CrossRefGoogle Scholar
  32. 32.
    J.B. Goodenough, R. Manoharan, M. Paranthaman, J. Am, Chem. Soc. 112, 2076–2082 (1990)CrossRefGoogle Scholar
  33. 33.
    B. Hribar, N.T. Southall, V. Vlachy, K.A. Dill, J. Am, Chem. Soc. 124, 12302–12311 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Electrochemical Energy LaboratoryCambridgeUSA
  3. 3.Department of Mechanical EngineeringCambridgeUSA
  4. 4.Department of ChemistryTechnische Universität MünchenGarchingGermany
  5. 5.Harvard University Center for the EnvironmentHarvard UniversityCambridgeUSA

Personalised recommendations