Skip to main content
Log in

Simple Preparation of Au Nanoparticles and Their Application to Au Core/Pt Shell Catalysts for Oxygen Reduction Reaction

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Au nanoparticle-loaded carbon black (Au/CB) was prepared simply by bubbling CO as a reducing agent in a KAuCl4 aqueous solution containing polyvinyl alcohol as a stabilizer and then mixing Ketjen black as carbon black. X-ray diffraction spectra and transmission electron micrographs exhibited that the Au nanoparticles loaded on CB had the mean size of 3.3 nm which was scarcely increased even by the heat-treatment at 400 °C. For the Au/CB heat-treated at 400 °C (Au/CB-HT400), the modification of the Au nanoparticles with a Pt monolayer shell was performed by underpotential deposition of Cu and the following galvanic displacement with Pt. Cyclic voltammograms of Au–Pt1/CB-HT400 and Au–Pt2/CB-HT400 electrodes, which mean a Pt monolayer shell was deposited once and twice on Au/CB-HT400, indicated that 73 % and 97 % of the Au core nanoparticle surface were covered with the Pt shell, respectively. Koutecky–Levich plots made from hydrodynamic voltammograms of the Au–Pt x /CB-HT400 (x = 1, 2) electrodes exhibited that oxygen reduction reaction at both electrodes proceeded in four-electron mechanism like commercial Pt/CB. The mass activity at 0.9 V vs. RHE for Au–Pt1/CB-HT400 and Au–Pt2/CB-HT400 was ca. 5.1 and 4.4 times as high as that for the commercial Pt/CB, respectively. Moreover, in durability tests in which the square-wave potential cycling between 0.6 and 1.0 V vs. RHE was repeated 104 times, both catalysts were equivalent or superior to the commercial Pt/CB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Angew Chem Int Ed 44, 2132 (2005)

    Article  CAS  Google Scholar 

  2. M. Inaba, H. Ito, H. Tuji, T. Wada, M. Banno, H. Yamada, M. Saito, A. Tasaka, ECS Trans 33, 231 (2010)

    Article  CAS  Google Scholar 

  3. M. Fayette, Y. Liu, D. Bertrand, J. Nutariya, N. Vasiljevic, N. Dimitrov, Langmuir 27, 5650 (2011)

    Article  CAS  Google Scholar 

  4. J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Science 315, 220 (2007)

    Article  CAS  Google Scholar 

  5. H. Zhang, Y. Yin, Y. Hu, C. Li, P. Wu, S. Wei, C. Cai, J Phys Chem C 114, 11861 (2010)

    Article  CAS  Google Scholar 

  6. K. Sasaki, J.X. Wang, H. Naohara, N. Marinkovic, K. More, H. Inada, R.R. Adzic, Electrochim. Acta 55, 2645 (2010)

    Article  CAS  Google Scholar 

  7. M.H. Li, J.S. Do, J Power Sourc 188, 353 (2009)

    Article  Google Scholar 

  8. Y. Chen, Z. Liang, F. Yang, Y. Liu, S. Chen, J Phys Chem C 115, 24073 (2011)

    Article  CAS  Google Scholar 

  9. Y. Zhang, Q. Huang, Z. Zou, J. Yang, W. Vogel, H. Yang, J Phys Chem C 114, 6860 (2010)

    Article  CAS  Google Scholar 

  10. Au-Pt phase diagram, “Binary Alloy Phase Diagram”, Second Edition, Plus Updates, Ver. 1.0, ASM International, Materials Park (1996)

  11. T.G. Schaaff, G. Knight, M.N. Shafigullin, R.F. Borkman, R.L. Whetten, J Phys Chem B 102, 10643 (1998)

    Article  CAS  Google Scholar 

  12. A.C. Templeton, S.W. Chen, S.M. Gross, R.W. Murray, Langmuir 15, 66 (1999)

    Article  CAS  Google Scholar 

  13. F. Manea, C. Bindoli, S. Polizzi, L. Lay, P. Scrimin, Langmuir 24, 4120 (2008)

    Article  CAS  Google Scholar 

  14. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, J Phys Chem B 110, 15700 (2006)

    Article  CAS  Google Scholar 

  15. H. Okatsu, N. Kinoshita, T. Akita, T. Ishida, M. Haruta, Appl Catal Gen 369, 8 (2009)

    Article  CAS  Google Scholar 

  16. F. Porta, L. Prati, M. Rossi, S. Coluccia, G. Martra, Catal Today 61, 165 (2000)

    Article  CAS  Google Scholar 

  17. M. Comatti, C.D. Pina, R. Matarrese, M. Rossi, A. Siani, Appl Catal Gen 291, 204 (2005)

    Article  Google Scholar 

  18. A. Henglein, D. Meisel, Langmuir 14, 7392 (1998)

    Article  CAS  Google Scholar 

  19. M. Shao, A. Peles, K. Shoemker, M. Gummalla, P.N. Njoki, J. Luo, C.J. Zhong, J Phys Chem Lett 2, 67 (2011)

    Article  CAS  Google Scholar 

  20. T. Inasaki, S. Kobayashi, Electrochim Acta 54, 4893 (2009)

    Article  CAS  Google Scholar 

  21. J.S. Jirkovsky, M. Halasa, D.J. Schiffrin, Phys Chem Chem Phys 12, 8042 (2010)

    Article  CAS  Google Scholar 

  22. E. Higuchi, A. Taguchi, K. Hayashi, H. Inoue, Electrochemistry 79, 353 (2011)

    Article  CAS  Google Scholar 

  23. E. Higuchi, A. Taguchi, K. Hayashi, H. Inoue, J Electroanal Chem 663, 84 (2011)

    Article  CAS  Google Scholar 

  24. L.A. Pretzer, Q.X. Nguyen, M.S. Wong, J Phys Chem C 114, 21226 (2010)

    Article  CAS  Google Scholar 

  25. E. Higuchi, H. Uchida, M. Watanabe, J Electroanal Chem 583, 69 (2005)

    Article  CAS  Google Scholar 

  26. P.B. Stewart, P.J. Munjal, Chem Eng Data 15, 67 (1970)

    Article  CAS  Google Scholar 

  27. P.S. Thomas, J.P. Guerbois, G.F. Russell, B.J. Briscoe, J Therm Anal Calorim 64, 501 (2001)

    Article  CAS  Google Scholar 

  28. B.J. Holland, J.N. Hay, Polymer 42, 6775 (2001)

    Article  CAS  Google Scholar 

  29. J.P. Hoare, J Electrochem Soc 131, 1808 (1984)

    Article  CAS  Google Scholar 

  30. D.F. Yancey, E.V. Carino, R.M. Crooks, J Am Chem Soc 132, 10988 (2010)

    Article  CAS  Google Scholar 

  31. U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, J Phys Chem B 106, 4181 (2002)

    Article  CAS  Google Scholar 

  32. N.M. Markovic, H.A. Gasteiger, B.N. Grgur, P.N. Ross, J Electroanal Chem 467, 157 (1999)

    Article  CAS  Google Scholar 

  33. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J Electrochem Soc 146, 3750 (1999)

    Article  CAS  Google Scholar 

  34. A. Damjanovic, J.O’.M. Bockris, Electrochim Acta 11, 376 (1966)

    Article  CAS  Google Scholar 

  35. T.J. Schmidt, U.A. Paulus, H.A. Gasteiger, R.J. Behm, J Electroanal Chem 508, 41 (2001)

    Article  CAS  Google Scholar 

  36. N.M. Markovic, P.N. Ross, in Interfacial Electrochemistry, Theory, Experiment, and Applications, ed. by A. Wieckowski (Marcel Dekker, New York, 1999), pp. 821–841

    Google Scholar 

Download references

Acknowledgments

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) through the Industrial Technology Research Grant Program (08002049-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, E., Hayashi, K., Chiku, M. et al. Simple Preparation of Au Nanoparticles and Their Application to Au Core/Pt Shell Catalysts for Oxygen Reduction Reaction. Electrocatalysis 3, 274–283 (2012). https://doi.org/10.1007/s12678-012-0101-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-012-0101-6

Keywords

Navigation