Skip to main content
Log in

Fuel Cells Catalyst for Start-Up and Shutdown Conditions: Electrochemical, XPS, and STEM Evaluation of Sputter-Deposited Ru, Ir, and Ti on Pt-Coated Nanostructured Thin Film Supports

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Minute amounts of Ru, Ir, and Ti (2 and 10 μg/cm2) sputter-deposited over 3M Pt-coated nanostructured thin film (NSTF) substrate were evaluated as oxygen evolution reaction (OER) catalysts in a polymer electrolyte membrane (PEM) environment. The purpose of the study was to explore the suitability of these elements for modifying both the anode and the cathode catalysts in order to lower the overpotential for the oxidation of water during transient conditions. By keeping the electrode potential as close as possible to the thermodynamic potential for OER, other components in the fuel cell, such as platinum, the gas diffusion layer, and the bipolar plates, will be less prone to degradation. While Ru and Ir were chosen due to their high OER activity in aqueous environment, Ti was also included due to its ability to stabilize the OER catalysts. The 3M Pt-NSTF was selected as a stable, carbon-free substrate. The surface chemistry and the morphology of OER catalysts on Pt-NSTF were examined by X-ray photoelectron spectroscopy and scanning transmission electron microscopy. The OER catalytic activity of Ru and Ir in PEMs compares well with their behavior in aqueous environment. It was found that Ru is more active than Ir, that Ir is considerably more stable, while the mass activity of both is higher in comparison with similar OER catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.T. Yu, S. Kocha, L. Paine, W. Gu, F.T. Wagner, AIChE Annual Meeting, New Orleans, LA, April 25–29, 2004.

  2. C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, Electrochem. Solid-State Lett. 8, A273 (2005)

    Article  CAS  Google Scholar 

  3. R. T. Atanasoski, Durable catalysts for fuel cell protection during transient conditions (2010 DOE Hydrogen Program Review, Washington, DC, USA). http://www.hydrogen.energy.gov/pdfs/progress10/v_e_6_atanasoski.pdf.

  4. M.K. Debe, S.M. Hendricks, A.K. Schmoeckel, R.T. Atanasoski, G.D. Vernstrom, G.M. Haugen, ECS Trans. 1, 51 (2006)

    Article  CAS  Google Scholar 

  5. M.K. Debe, A.K. Schmoeckel, G.D. Vernstrom, R.T. Atanasoski, J. Power Sources 161, 1002 (2006)

    Article  CAS  Google Scholar 

  6. S. Trasatti, Electrochim. Acta 36, 225 (1991)

    Article  CAS  Google Scholar 

  7. M.K. Debe, Novel catalysts, catalyst supports and catalyst coated membrane methods, in Handbook of fuel cells—fundamentals, technology and applications, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, Weinheim, 2003)

    Google Scholar 

  8. Atanasoska L, Flynn D, Heil R, Trasatti S (2001) The Electrochem. Soc. Meeting, Abstract #1153, 2001–2002, San Francisco, 2–7 September.

  9. L. Atanasoska, P. Gupta, C. Deng, J. Thompson, ECS Trans. 16, 37 (2009)

    Article  CAS  Google Scholar 

  10. E. Slavcheva, U. Schnackenberg, W. Mokwa, Appl. Surf. Sci. 253, 1964 (2006)

    Article  CAS  Google Scholar 

  11. E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, E. Budevski, Electrochim. Acta 52, 3889 (2007)

    Article  CAS  Google Scholar 

  12. D. Labou, E. Slavcheva, U. Schnakenberg, S. Neophytides, J. Power Sources 185, 1073 (2008)

    Article  CAS  Google Scholar 

  13. DOE Hydrogen and Fuel Cells Program Record (2010) http://www.hydrogen.energy.gov/pdfs/9018_platinum_group.pdf.

  14. K.L. More, R. Borup, K.S. Reeves, ECS Trans. 3, 717 (2006)

    Article  CAS  Google Scholar 

  15. F. Ettingshausen, J. Kleemann, A. Marcu, G. Toth, H. Fuess, C. Roth, Fuel Cells 11, 238 (2011)

    Article  CAS  Google Scholar 

  16. L. Atanasoska, R. Atanasoski, S. Trasatti, Vacuum 40, 91 (1990)

    Article  CAS  Google Scholar 

  17. C. Angelinetta, S. Trasatti, Lj. D. Atanasoska, Z.S. Minevski, R.T. Atanasoski, Mater. Chem. Phys. 22, 231 (1989)

    Article  CAS  Google Scholar 

  18. C. Angelinetta, S. Trasatti, Lj. D. Atanasoska, R.T. Atanasoski, J. Electroanal. Chem. 214, 535 (1986)

    Article  CAS  Google Scholar 

  19. L. Atanasoska, W. O’Grady, R. Atanasoski, F. Pollak, Surf. Sci. 202, 192 (1988)

    Article  Google Scholar 

  20. L. Atanasoska, R. Atanasoski, W. O’Grady, F. Pollak, Surf. Sci. 230, 195 (1990)

    Article  Google Scholar 

  21. L. Atanasoska, S. Anderson, H.M. Meyer III, Z. Lin, J.H. Weaver, J. Vac. Sci. Technol., A 5, 3325 (1987)

    Article  CAS  Google Scholar 

  22. L. Atanasoska, H.M. Meyer III, S. Anderson, J.H. Weaver, J. Vac. Sci. Technol., A 6, 2175 (1988)

    Article  CAS  Google Scholar 

  23. Liu GC-K, Sanderson RJ, Vernstrom G, Stevens DA, Atanasoski RT, Debe MK, Dahn JR (2009) 216th ECS Meeting, Abstract, Vienna, Austria, October

  24. R. Forgie, G. Bugosh, K.C. Neyerlin, Z. Liu, P. Strasser, Electrochem. Solid-State Lett. 13, B36 (2010)

    Article  CAS  Google Scholar 

  25. S. Trasatti, Oxygen evolution, in Encyclopedia of electrochemical power sources, Vol. 1, ed. by J. Garche, C. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam, 2009)

    Google Scholar 

  26. R. Atanasoski: http://www.hydrogen.energy.gov/pdfs/review11/fc006_atanasoski_2011_o.pdf.

  27. A. Ohma, K. Shinohara, A. Iiyama, T. Yoshida, A. Daimaru, ECS Trans. 41, 775 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Theresa Watschke, Jess Wheldon, and Jimmy Wong are acknowledged for their assistance in the fuel cell testing. This work was supported by the Fuel Cell Technologies Program, Office of Energy Efficiency and Renewable Energy, US Department of Energy under Award Number DE-EE0000456. This research was sponsored by Oak Ridge National Laboratory’s Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslav T. Atanasoski.

Additional information

This paper is dedicated to our friend and colleague, Radoslav R. Adzic, in celebration of his 70th birthday and his significant contributions to the field of electrocatalysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atanasoski, R.T., Atanasoska, L.L., Cullen, D.A. et al. Fuel Cells Catalyst for Start-Up and Shutdown Conditions: Electrochemical, XPS, and STEM Evaluation of Sputter-Deposited Ru, Ir, and Ti on Pt-Coated Nanostructured Thin Film Supports. Electrocatalysis 3, 284–297 (2012). https://doi.org/10.1007/s12678-012-0092-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-012-0092-3

Keywords

Navigation