Skip to main content
Log in

Electrodeposited Rh and Rh–Cu Alloys as Ethanol-Tolerant Electrocatalysts for Oxygen Reduction in Alkaline Media

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this study, rhodium–copper alloys of different compositions are electrodeposited on graphite electrode from aqueous solutions. The bulk compositions of these alloys are determined using energy dispersive X-ray analysis and surface morphologies are investigated by scanning electron microscopy. The catalytic performance of these alloys in oxygen reduction reaction (ORR) in alkaline media is investigated by linear sweep voltammetry on rotating disk electrode assembly. The number of electrons transferred per O2 molecule (n) obtained at different potentials is four indicating full reduction of oxygen to hydroxide ion. It is shown that Rh–Cu alloys are better electrocatalysts than Rh with Rh–Cu-2 having 68.7% copper is the best in the series. Also, the resistance of the Rh–Cu electrocatalysts towards ethanol poisoning is investigated and it is found that the addition of Cu-enhanced ethanol tolerance in the course of the ORR. Finally, it has been shown that the electrocatalysts have good stability in alkaline solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Mani, R. Srivastava, P. Strasser, J Phys Chem C 112, 2770 (2008)

    Article  CAS  Google Scholar 

  2. E. Antolini, T. Lopes, E.R. Gonzalez, J Alloy Compd 461, 253 (2008)

    Article  CAS  Google Scholar 

  3. J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J Phys Chem B 108, 17886 (2004)

    Article  CAS  Google Scholar 

  4. W. Hea, J. Liub, Y. Qiaob, Z. Zoub, X. Zhanga, D.L. Akinsc, H. Yangb, J Power Sources 195, 1046 (2010)

    Article  Google Scholar 

  5. K. Ramya, K.S. Dhathathreyan, J Electroanal Chem 542, 109 (2003)

    Article  CAS  Google Scholar 

  6. B. Gurau, E.S. Smotkin, J Power Sources 112, 339 (2002)

    Article  CAS  Google Scholar 

  7. P.M. Urban, A. Funke, J.T. Muller, M. Himmen, A. Docter, Appl Catal A 221, 459 (2001)

    Article  CAS  Google Scholar 

  8. K.W. Park, D.S. Hanb, Y.E. Sung, J Power Sources 163, 82 (2006)

    Article  CAS  Google Scholar 

  9. R. Wang, S. Liao, Z. Fu, S. Ji, Electrochem Commun 10, 523 (2008)

    Article  CAS  Google Scholar 

  10. R.W. Reeve, P.A. Christensen, A. Hamnett, S.A. Haydock, S.C. Roy, J Electrochem Soc 145, 3463 (1998)

    Article  CAS  Google Scholar 

  11. R.W. Reeve, P.A. Christensen, A.J. Dickinson, A. Hamnett, K. Scott, Electrochim Acta 45, 4237 (2000)

    Article  CAS  Google Scholar 

  12. R. Krishnamurthy, S.S.C. Chuand, K. Ghosal, Appl Catal A 114, 109 (1994)

    Article  CAS  Google Scholar 

  13. F. Solymosi, J. Cserenyi, Catal Lett 34, 343 (1995)

    Article  CAS  Google Scholar 

  14. B. Coq, R. Dutartre, F. Fjgueras, A. Rouco, J Phys Chem 93, 4904 (1989)

    Article  CAS  Google Scholar 

  15. A. Peter, J.K.A. Clarke, J Chem Soc Faraday Trans 1(72), 1201 (1976)

    Google Scholar 

  16. J.A. Rodriguez, R.A. Campbell, D.W. Goodman, J Phys Chem 94, 6936 (1990)

    Article  CAS  Google Scholar 

  17. J.A. Rodriguez, R.A. Campbell, D.W. Goodman, J Phys Chem 95, 2477 (1991)

    Article  CAS  Google Scholar 

  18. S.C. Chou, C.T. Yeh, T.H. Chang, J Phys Chem B 101, 5828 (1997)

    Article  CAS  Google Scholar 

  19. L. Irons, S. Mini, W.E. Brower, Mater Sci Eng 98, 309 (1988)

    Article  CAS  Google Scholar 

  20. H.F.J. Vant Blik, R. Prins, J Catal 97, 188 (1986)

    Article  CAS  Google Scholar 

  21. G. Meitzner, G.H. Via, F.W. Lytle, J.H. Sinfelt, J Chem Phys 78, 882 (1983)

    Article  CAS  Google Scholar 

  22. C.R.K. Rao, D.C. Trivedi, Coord Chem Rev 249, 613 (2005)

    Article  CAS  Google Scholar 

  23. D. Pletcher, R.I. Urbina, J Electroanal Chem 421, 137 (1997)

    Article  CAS  Google Scholar 

  24. I. Tabakovic, J.M. Qiu, S. Riemer, M. Sun, V. Vasko, M. Kief, Electrochim Acta 53, 2483 (2008)

    Article  CAS  Google Scholar 

  25. O. Brylev, L. Roue, D. Belanger, J Electroanal Chem 581, 22 (2005)

    Article  CAS  Google Scholar 

  26. I. Tabakovic, S. Riemer, V. Vasko, M. Kief, Electrochim Acta 53, 8008 (2008)

    Article  CAS  Google Scholar 

  27. D. Cukman, M. Vukovic, J Electroanal Chem 279, 273 (1990)

    Article  CAS  Google Scholar 

  28. M.M. Jaksic, B. Johansen, R. Tunold, Int J Hydrogen Energy 19, 35 (1994)

    Article  CAS  Google Scholar 

  29. M. Lukaszewski, H. Siwek, A. Czerwinski, Electrochim Acta 52, 4560 (2007)

    Article  CAS  Google Scholar 

  30. M. Peuckert, Surf Sci 141, 500 (1984)

    Article  CAS  Google Scholar 

  31. G. Jerkiewicz, J.J. Borodzinski, Langmuir 9, 2202 (1993)

    Article  CAS  Google Scholar 

  32. G. Jerkiewicz, J.J. Borodzinski, J. Chem. Soc. Faraday Trans 90, 3669 (1994)

    Article  CAS  Google Scholar 

  33. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 1st edn. (Wiley, New York, 1980), pp. 95–292

    Google Scholar 

  34. J.R. Bourne, P. DellAva, O. Dossenbach, T. Post, J Chem Eng Data 30, 160 (1985)

    Article  CAS  Google Scholar 

  35. M. Metikos-Hukovic, R. Babic, F. Jovic, Z. Grubac, Electrochim Acta 51, 1157 (2006)

    Article  CAS  Google Scholar 

  36. V. Jalan, E.J. Taylor, J Electrochem Soc 130, 2299 (1983)

    Article  CAS  Google Scholar 

  37. T. Toda, H. Igarashi, M. Watanabe, J Electrochem Soc 145, 4185 (1998)

    Article  CAS  Google Scholar 

  38. S. Mukerjee, S. Srinivasan, M.P. Soriaga, J. McBreen, J Phys Chem 99, 4577 (1995)

    Article  CAS  Google Scholar 

  39. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J Electrochem Soc 146, 3750 (1999)

    Article  CAS  Google Scholar 

  40. F. Fouda-Onana, S. Bah, O. Savadogo, J Electroanal Chem 636, 1 (2009)

    Article  CAS  Google Scholar 

  41. R.C. Koffi, C. Coutanceau, E. Garnier, J.M. Leger, C. Lamy, Electrochim Acta 50, 4117 (2005)

    Article  CAS  Google Scholar 

  42. N.A. Anastasijevic, Z.M. Dimitrijevic, R.R. Adzic, J Electroanal Chem 199, 351 (1986)

    Article  CAS  Google Scholar 

  43. C.C. Chang, T.C. Wen, J Appl Electrochem 27, 355 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank the financial support of the Office of the Vice Chancellor of Research of Sharif University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramezan Arab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gobal, F., Arab, R. Electrodeposited Rh and Rh–Cu Alloys as Ethanol-Tolerant Electrocatalysts for Oxygen Reduction in Alkaline Media. Electrocatal 2, 42–51 (2011). https://doi.org/10.1007/s12678-010-0034-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-010-0034-x

Keywords

Navigation