Skip to main content
Log in

Graphene Supported Pd Electrocatalysts for Formic Acid Oxidation

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Highly loaded 80 wt.% Pd/graphene nanosheet (GNS) electrocatalysts were synthesized by colloidal method in order to alleviate the degradation rate of Pd catalysts in formic acid oxidation. Pd nanoparticles deposited on the GNS were well distributed on the surface more homogenously and average particle size of these metals is 4.6 ± 0.6 nm as compared to Pd/VC (5.0 ± 1 nm), which is verified by X-ray diffraction peak and high-resolution transmission electron microscope images. Electrochemical measurements conducted by cyclic voltammetry and chronoamperometry show that Pd/GNS catalysts exhibited significantly enhanced electrocatalytic activity and stability for formic acid oxidation compared to Pd/VC catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Uhm S, Lee HJ, Kwon Y, Lee J (2008) Angew Chem 47:10163

    Article  CAS  Google Scholar 

  2. Uhm S, Lee HJ, Lee J (2009) Phys Chem Chem Phys 11:9326

    Article  CAS  Google Scholar 

  3. Miesse CM, Jung WS, Jeong KJ, Lee JK, Lee J, Han J, Yoon SP, Nam SW, Lim TH, Hong SA (2006) J Power Sources 162:532

    Article  CAS  Google Scholar 

  4. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) J Power Sources 111:83

    Article  CAS  Google Scholar 

  5. Yu X, Pickup PG (2008) J Power Sources 182:124

    Article  CAS  Google Scholar 

  6. Zhang S, Qing M, Zhang H, Tian Y (2009) Electrochem Commun 11:2249

    Article  CAS  Google Scholar 

  7. Zhang L, Li T, Bao J, Tang Y, Li C (2006) Electrochem Commun 8:1625

    Article  CAS  Google Scholar 

  8. Wang R, Liao S, Ji S (2008) J Power Sources 180:205

    Article  CAS  Google Scholar 

  9. Yoo E, Okada T, Kizuka T, Nakamura J (2008) J Power Sources 180:221

    Article  CAS  Google Scholar 

  10. Bessel CA, Laubernds K, Rodriguez NM, Baker RTK (2001) J Phys Chem B 105:1115

    Article  CAS  Google Scholar 

  11. Joo SH, Pak C, You DJ, Lee SA, Lee HI, Kim JM, Chang H, Seung D (2006) Electrochim Acta 52:1618

    Article  CAS  Google Scholar 

  12. Bang JH, Han K, Skrabalak SE, Kim H, Suslik KS (2007) J Phys Chem C 111:10959

    Article  CAS  Google Scholar 

  13. Xu C, Wang X, Zhu J (2008) J Phys Chem C 112:19841

    Article  CAS  Google Scholar 

  14. Lee JH, Shin DW, Makotchenko VG, Nazarov AS, Fedorov VE, Kim YH, Choi JY, Kim JM, Yoo JB (2009) Adv Mater 21:1

    Google Scholar 

  15. Kovtyukhova NI, Olliver PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771

    Article  CAS  Google Scholar 

  16. Bőnnemann H, Brijoux W, Brinkmann R, Dinjus E, Joußen T, Korall B (1991) Angew Chem Int Ed 30:1312

    Article  Google Scholar 

  17. Schmidt TJ, Noeske M, Gasteiger HA, Behm RJ, Britz P, Bőnnemann H (1998) J Electrochem Soc 145:925

    Article  CAS  Google Scholar 

  18. Han K, Lee J, Kim H (2006) Electrochim Acta 52:1697

    Article  CAS  Google Scholar 

  19. Bong S, Kim YR, Kim I, Woo S, Uhm S, Lee J, Kim H (2010) Electrochem Commun 12:129

    Article  CAS  Google Scholar 

  20. Li H, Sun G, Jiang Q, Zhu M, Sun S, Xin Q (2007) Electrochem Commun 9:1410

    Article  CAS  Google Scholar 

  21. Han K, Lee J, Park S, Lee S, Park Y, Kim H (2004) Electrochim Acta 50:791–794

    Article  CAS  Google Scholar 

  22. Lordi V, Yao N, Wei J (2001) Chem Mater 13:733

    Article  CAS  Google Scholar 

  23. Prabhuram J, Zhao TS, Tang ZK, Chen R, Liang ZX (2006) J Phys Chem B 110:5245

    Article  CAS  Google Scholar 

  24. Kou R, Shao Y, Wang D, Engelhard MH, Kwak JH, Wang J, Viswanathan VV, Wang C, Lin Y, Wang Y, Aksay IA, Liu J (2009) Electrochem Commun 11:954

    Article  CAS  Google Scholar 

  25. Yang S, Zhang X, Mi H, Ye X (2008) J Power Sources 175:26

    Article  CAS  Google Scholar 

  26. Min MK, Cho J, Cho K, Kim H (2000) Electrochim Acta 45:4211

    Article  CAS  Google Scholar 

  27. Eda G, Fanchini G, Chhowalla M (2008) Nature Nanotech 3:270

    Article  CAS  Google Scholar 

  28. Allen MJ, Tung VC, Kaner RB (2010) Chem Rev 110:132

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant by the Korea government (MEST; no. R11-2005-008-06002-0). S. Bong and Y.-R. Kim were supported by the Brain Korea 21 fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaeyoung Lee or Hasuck Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bong, S., Uhm, S., Kim, YR. et al. Graphene Supported Pd Electrocatalysts for Formic Acid Oxidation. Electrocatal 1, 139–143 (2010). https://doi.org/10.1007/s12678-010-0021-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-010-0021-2

Keywords

Navigation