Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921
PubMed
CAS
Google Scholar
Jensen CB, Saucke MC, Francis DO, Voils CI, Pitt SC (2020) From overdiagnosis to overtreatment of low-risk thyroid cancer: a thematic analysis of attitudes and beliefs of endocrinologists, surgeons, and patients. Thyroid 30(5):696–703
PubMed
PubMed Central
Google Scholar
Kitahara CM, Sosa JA (2016) The changing incidence of thyroid cancer. Nat Rev Endocrinol 12(11):646–653
PubMed
Google Scholar
Li M, Maso LD, Vaccarella S (2020) Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diabetes Endocrinol 8(6):468–470
PubMed
Google Scholar
Seib CD, Sosa JA (2019) Evolving understanding of the epidemiology of thyroid cancer. Endocrinol Metab Clin N Am 48(1):23–35
Google Scholar
Hoffman K, Lorenzo A, Butt CM, Hammel SC, Henderson BB, Roman SA, Scheri RP, Stapleton HM, Sosa JA (2017) Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: a case-control study. Environ Int 107:235–242
PubMed
CAS
Google Scholar
Qian ZJ, Jin MC, Meister KD, Megwalu UC (2019) Pediatric thyroid cancer incidence and mortality trends in the United States, 1973-2013. JAMA Otolaryngol–Head Neck Surg 145(7):617–623
PubMed
PubMed Central
Google Scholar
Hanahan D, Weinberg RA (2000) The hallmarks of Cancer. Cell 100(1):57–70
PubMed
CAS
Google Scholar
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674
PubMed
CAS
Google Scholar
Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, Auman JT, Balasundaram M, Balu S, Baylin SB, Behera M, Bernard B, Beroukhim R, Bishop JA, Black AD, Bodenheimer T, Boice L, Bootwalla MS, Bowen J, Bowlby R, Bristow CA, Brookens R, Brooks D, Bryant R, Buda E, Butterfield YSN, Carling T, Carlsen R, Carter SL, Carty SE, Chan TA, Chen AY, Cherniack AD, Cheung D, Chin L, Cho J, Chu A, Chuah E, Cibulskis K, Ciriello G, Clarke A, Clayman GL, Cope L, Copland JA, Covington K, Danilova L, Davidsen T, Demchok JA, DiCara D, Dhalla N, Dhir R, Dookran SS, Dresdner G, Eldridge J, Eley G, el-Naggar AK, Eng S, Fagin JA, Fennell T, Ferris RL, Fisher S, Frazer S, Frick J, Gabriel SB, Ganly I, Gao J, Garraway LA, Gastier-Foster JM, Getz G, Gehlenborg N, Ghossein R, Gibbs RA, Giordano TJ, Gomez-Hernandez K, Grimsby J, Gross B, Guin R, Hadjipanayis A, Harper HA, Hayes DN, Heiman DI, Herman JG, Hoadley KA, Hofree M, Holt RA, Hoyle AP, Huang FW, Huang M, Hutter CM, Ideker T, Iype L, Jacobsen A, Jefferys SR, Jones CD, Jones SJM, Kasaian K, Kebebew E, Khuri FR, Kim J, Kramer R, Kreisberg R, Kucherlapati R, Kwiatkowski DJ, Ladanyi M, Lai PH, Laird PW, Lander E, Lawrence MS, Lee D, Lee E, Lee S, Lee W, Leraas KM, Lichtenberg TM, Lichtenstein L, Lin P, Ling S, Liu J, Liu W, Liu Y, LiVolsi VA, Lu Y, Ma Y, Mahadeshwar HS, Marra MA, Mayo M, McFadden DG, Meng S, Meyerson M, Mieczkowski PA, Miller M, Mills G, Moore RA, Mose LE, Mungall AJ, Murray BA, Nikiforov YE, Noble MS, Ojesina AI, Owonikoko TK, Ozenberger BA, Pantazi A, Parfenov M, Park PJ, Parker JS, Paull EO, Pedamallu CS, Perou CM, Prins JF, Protopopov A, Ramalingam SS, Ramirez NC, Ramirez R, Raphael BJ, Rathmell WK, Ren X, Reynolds SM, Rheinbay E, Ringel MD, Rivera M, Roach J, Robertson AG, Rosenberg MW, Rosenthal M, Sadeghi S, Saksena G, Sander C, Santoso N, Schein JE, Schultz N, Schumacher SE, Seethala RR, Seidman J, Senbabaoglu Y, Seth S, Sharpe S, Shaw KRM, Shen JP, Shen R, Sherman S, Sheth M, Shi Y, Shmulevich I, Sica GL, Simons JV, Sinha R, Sipahimalani P, Smallridge RC, Sofia HJ, Soloway MG, Song X, Sougnez C, Stewart C, Stojanov P, Stuart JM, Sumer SO, Sun Y, Tabak B, Tam A, Tan D, Tang J, Tarnuzzer R, Taylor BS, Thiessen N, Thorne L, Thorsson V, Tuttle RM, Umbricht CB, van den Berg DJ, Vandin F, Veluvolu U, Verhaak RGW, Vinco M, Voet D, Walter V, Wang Z, Waring S, Weinberger PM, Weinhold N, Weinstein JN, Weisenberger DJ, Wheeler D, Wilkerson MD, Wilson J, Williams M, Winer DA, Wise L, Wu J, Xi L, Xu AW, Yang L, Yang L, Zack TI, Zeiger MA, Zeng D, Zenklusen JC, Zhao N, Zhang H, Zhang J, Zhang J(J), Zhang W, Zmuda E, Zou L (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3):676–690
PubMed Central
Google Scholar
Nikiforov YE (2011) Molecular analysis of thyroid tumors. Mod Pathol 24(S2):S34–S43
PubMed
CAS
Google Scholar
Nikiforov YE (2011) Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med 135(5):569–577
PubMed
CAS
Google Scholar
Nikiforov YE, Nikiforova MN (2011) Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 7(10):569–580
PubMed
CAS
Google Scholar
Chintakuntlawar AV, Foote RL, Kasperbauer JL, Bible KC (2019) Diagnosis and management of anaplastic thyroid cancer. Endocrinol Metab Clin N Am 48(1):269–284
Google Scholar
Clement SC, Kremer LCM, Links TP, Mulder RL, Ronckers CM, van Eck-Smit BLF, van Rijn RR, van der Pal HJH, Tissing WJE, Janssens GO, van den Heuvel-Eibrink MM, Neggers SJCMM, van Dijkum EJMN, Peeters RP, van Santen HM (2015) Is outcome of differentiated thyroid carcinoma influenced by tumor stage at diagnosis? Cancer Treat Rev 41(1):9–16
PubMed
CAS
Google Scholar
Cooper DS et al (2009) Revised American Thyroid Association Management Guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11):1167–1214
PubMed
Google Scholar
Davis P et al (2015) Recurrence of differentiated thyroid carcinoma during full TSH suppression: is the tumor now thyroid hormone dependent? Hormones Cancer 6(1):7–12
PubMed
CAS
Google Scholar
Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95(8):625–627
PubMed
CAS
Google Scholar
Fukushima T et al BRAF mutations in papillary carcinomas of the thyroid. Oncogene 22(41):6455–6457
Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T, Yamashita S (2003) Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 88(9):4393–4397
PubMed
CAS
Google Scholar
Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, Zhu Z, Giannini R, Salvatore G, Fusco A, Santoro M, Fagin JA, Nikiforov YE (2003) BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88(11):5399–5404
PubMed
CAS
Google Scholar
Trovisco V, Vieira de Castro I, Soares P, Máximo V, Silva P, Magalhães J, Abrosimov A, Guiu XM, Sobrinho-Simões M (2004) BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J Pathol 202(2):247–251
PubMed
CAS
Google Scholar
Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TWJ, Harris PE (1999) Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol 50(4):529–535
CAS
Google Scholar
Karga H et al (1991) Ras oncogene mutations in benign and malignant thyroid neoplasms. J Clin Endocrinol Metab 73(4):832–836
PubMed
CAS
Google Scholar
Namba H, Rubin SA, Fagin JA (1990) Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4(10):1474–1479
PubMed
CAS
Google Scholar
Nucera C, Porrello A, Antonello ZA, Mekel M, Nehs MA, Giordano TJ, Gerald D, Benjamin LE, Priolo C, Puxeddu E, Finn S, Jarzab B, Hodin RA, Pontecorvi A, Nose V, Lawler J, Parangi S (2010) B-Raf(V600E) and thrombospondin-1 promote thyroid cancer progression. Proc Natl Acad Sci U S A 107(23):10649–10654
PubMed
PubMed Central
CAS
Google Scholar
Duquette M et al (2013) Thrombospondin-1 silencing down-regulates integrin expression levels in human anaplastic thyroid cancer cells with BRAF(V600E): new insights in the host tissue adaptation and homeostasis of tumor microenvironment. Front Endocrinol (Lausanne) 4:189
Google Scholar
Kazerounian S, Yee KO, Lawler J (2008) Thrombospondins in cancer. Cell Mol Life Sci 65(5):700–712
PubMed
PubMed Central
CAS
Google Scholar
Prete A, Lo AS, Sadow PM, Bhasin SS, Antonello ZA, Vodopivec DM, Ullas S, Sims JN, Clohessy J, Dvorak AM, Sciuto T, Bhasin M, Murphy-Ullrich JE, Lawler J, Karumanchi SA, Nucera C (2018) Pericytes elicit resistance to vemurafenib and sorafenib therapy in thyroid carcinoma via the TSP-1/TGFbeta1 Axis. Clin Cancer Res 24(23):6078–6097
PubMed
PubMed Central
CAS
Google Scholar
Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G (2005) PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7(9):870–879
PubMed
PubMed Central
CAS
Google Scholar
Franco M, Roswall P, Cortez E, Hanahan D, Pietras K (2011) Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 118(10):2906–2917
PubMed
PubMed Central
CAS
Google Scholar
Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36(6):961–968
PubMed
PubMed Central
CAS
Google Scholar
Chandrasekaran S, Guo NH, Rodrigues RG, Kaiser J, Roberts DD (1999) Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by alpha3beta1 integrin and regulated by insulin-like growth factor-1 and CD98. J Biol Chem 274(16):11408–11416
PubMed
CAS
Google Scholar
John AS, Rothman VL, Tuszynski GP (2010) Thrombospondin-1 (TSP-1) stimulates expression of integrin alpha6 in human breast carcinoma cells: a downstream modulator of TSP-1-induced cellular adhesion. J Oncol 2010:645376
PubMed
PubMed Central
Google Scholar
Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958
PubMed
PubMed Central
CAS
Google Scholar
Armstrong T, Packham G, Murphy LB, Bateman AC, Conti JA, Fine DR, Johnson CD, Benyon RC, Iredale JP (2004) Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 10(21):7427–7437
PubMed
CAS
Google Scholar
Ohlund D et al (2013) Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop. BMC Cancer 13:154
PubMed
PubMed Central
Google Scholar
Semenza GL (2016) The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim Biophys Acta 1863(3):382–391
PubMed
CAS
Google Scholar
Jolly LA, Novitskiy S, Owens P, Massoll N, Cheng N, Fang W, Moses HL, Franco AT (2016) Fibroblast-mediated collagen remodeling within the tumor microenvironment facilitates progression of thyroid cancers driven by BrafV600E and Pten loss. Cancer Res 76:1804–1813
PubMed
PubMed Central
CAS
Google Scholar
Tokarz D, Cisek R, Golaraei A, Asa SL, Barzda V, Wilson BC (2015) Ultrastructural features of collagen in thyroid carcinoma tissue observed by polarization second harmonic generation microscopy. Biomed Opt Express 6(9):3475–3481
PubMed
PubMed Central
CAS
Google Scholar
Boufraqech M, Nilubol N, Zhang L, Gara SK, Sadowski SM, Mehta A, He M, Davis S, Dreiling J, Copland JA, Smallridge RC, Quezado MM, Kebebew E (2015) miR30a inhibits LOX expression and anaplastic thyroid cancer progression. Cancer Res 75(2):367–377
PubMed
CAS
Google Scholar
Boufraqech M, Patel D, Nilubol N, Powers A, King T, Shell J, Lack J, Zhang L, Gara SK, Gunda V, Klubo-Gwiezdzinska J, Kumar S, Fagin J, Knauf J, Parangi S, Venzon D, Quezado M, Kebebew E (2019) Lysyl oxidase is a key player in BRAF/MAPK pathway-driven thyroid cancer aggressiveness. Thyroid 29(1):79–92
PubMed
PubMed Central
CAS
Google Scholar
Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122(Pt 2):159–163
PubMed
CAS
Google Scholar
Minna E et al (2020) Cancer associated fibroblasts and senescent thyroid cells in the invasive front of thyroid carcinoma. Cancers (Basel):12(1)
Khokha R, Denhardt DT (1989) Matrix metalloproteinases and tissue inhibitor of metalloproteinases: a review of their role in tumorigenesis and tissue invasion. Invasion Metastasis 9(6):391–405
PubMed
CAS
Google Scholar
Ray JM, Stetler-Stevenson WG (1994) The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. Eur Respir J 7(11):2062–2072
PubMed
CAS
Google Scholar
Nakamura H, Ueno H, Yamashita K, Shimada T, Yamamoto E, Noguchi M, Fujimoto N, Sato H, Seiki M, Okada Y (1999) Enhanced production and activation of progelatinase a mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res 59(2):467–473
PubMed
CAS
Google Scholar
Bumber B, Marjanovic Kavanagh M, Jakovcevic A, Sincic N, Prstacic R, Prgomet D (2020) Role of matrix metalloproteinases and their inhibitors in the development of cervical metastases in papillary thyroid cancer. Clin Otolaryngol 45(1):55–62
PubMed
Google Scholar
Luo D, Chen H, Li X, Lu P, Long M, Peng X, Lin S, Tan L, Zhu Y, Ouyang N, Li H (2017) Activation of the ROCK1/MMP-9 pathway is associated with the invasion and poor prognosis in papillary thyroid carcinoma. Int J Oncol 51(4):1209–1218
PubMed
CAS
Google Scholar
Meng XY, Zhang Q, Li Q, Lin S, Li J (2014) Immunohistochemical levels of cyclo-oxygenase-2, matrix metalloproteinase-9 and vascular endothelial growth factor in papillary thyroid carcinoma and their clinicopathological correlations. J Int Med Res 42(3):619–627
PubMed
Google Scholar
Wang N, Jiang R, Yang JY, Tang C, Yang L, Xu M, Jiang QF, Liu ZM (2014) Expression of TGF-β1, SNAI1 and MMP-9 is associated with lymph node metastasis in papillary thyroid carcinoma. J Mol Histol 45(4):391–399
PubMed
CAS
Google Scholar
Aust G et al (1997) Human thyroid carcinoma cell lines and normal thyrocytes: expression and regulation of matrix metalloproteinase-1 and tissue matrix metalloproteinase inhibitor-1 messenger-RNA and protein. Thyroid 7(5):713–724
PubMed
CAS
Google Scholar
Hofmann A et al (1998) mRNA levels of membrane-type 1 matrix metalloproteinase (MT1-MMP), MMP-2, and MMP-9 and of their inhibitors TIMP-2 and TIMP-3 in normal thyrocytes and thyroid carcinoma cell lines. Thyroid 8(3):203–214
PubMed
CAS
Google Scholar
Kameyama K (1996) Expression of MMP-1 in the capsule of thyroid cancer--relationship with invasiveness. Pathol Res Pract 192(1):20–26
PubMed
CAS
Google Scholar
Patel A, Straight AM, Mann H, Duffy E, Fenton C, Dinauer C, Tuttle RM, Francis GL (2002) Matrix metalloproteinase (MMP) expression by differentiated thyroid carcinoma of children and adolescents. J Endocrinol Investig 25(5):403–408
CAS
Google Scholar
Sponziello M, Rosignolo F, Celano M, Maggisano V, Pecce V, de Rose RF, Lombardo GE, Durante C, Filetti S, Damante G, Russo D, Bulotta S (2016) Fibronectin-1 expression is increased in aggressive thyroid cancer and favors the migration and invasion of cancer cells. Mol Cell Endocrinol 431:123–132
PubMed
CAS
Google Scholar
Hoffmann S, Maschuw K, Hassan I, Reckzeh B, Wunderlich A, Lingelbach S, Zielke A (2005) Differential pattern of integrin receptor expression in differentiated and anaplastic thyroid cancer cell lines. Thyroid 15(9):1011–1020
PubMed
CAS
Google Scholar
Shirley LA, McCarty S, Yang MC, Saji M, Zhang X, Phay J, Ringel MD, Chen CS (2016) Integrin-linked kinase affects signaling pathways and migration in thyroid cancer cells and is a potential therapeutic target. Surgery 159(1):163–170
PubMed
Google Scholar
Kessler BE, Sharma V, Zhou Q, Jing X, Pike LA, Kerege AA, Sams SB, Schweppe RE (2016) FAK expression, not kinase activity, is a key mediator of thyroid tumorigenesis and protumorigenic processes. Mol Cancer Res 14(9):869–882
PubMed
PubMed Central
CAS
Google Scholar
Kauppila S, Stenbäck F, Risteli J, Jukkola A, Risteli L (1998) Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J Pathol 186(3):262–268
PubMed
CAS
Google Scholar
Zhang, Xiang HF et al (2013) Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154(5):1060–1073
PubMed
PubMed Central
CAS
Google Scholar
Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1):49–54
PubMed
CAS
Google Scholar
Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906
PubMed
PubMed Central
CAS
Google Scholar
Northcott JM, Dean IS, Mouw JK, Weaver VM (2018) Feeling stress: the mechanics of cancer progression and aggression. Front Cell Dev Biol 6:17
PubMed
PubMed Central
Google Scholar
Bertero T et al (2019) Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab 29(1):124–140.e10
PubMed
CAS
Google Scholar
Velez DO, Ranamukhaarachchi SK, Kumar A, Modi RN, Lim EW, Engler AJ, Metallo CM, Fraley SI (2019) 3D collagen architecture regulates cell adhesion through degradability, thereby controlling metabolic and oxidative stress. Integr Biol (Camb) 11(5):221–234
PubMed Central
Google Scholar
Morris BA, Burkel B, Ponik SM, Fan J, Condeelis JS, Aguirre-Ghiso JA, Castracane J, Denu JM, Keely PJ (2016) Collagen matrix density drives the metabolic shift in breast cancer cells. EBioMedicine 13:146–156
PubMed
PubMed Central
Google Scholar
Jana A, Nookaew I, Singh J, Behkam B, Franco AT, Nain AS (2019) Crosshatch nanofiber networks of tunable interfiber spacing induce plasticity in cell migration and cytoskeletal response. FASEB J 33(10):10618–10632
PubMed
PubMed Central
CAS
Google Scholar
Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122(3):787–795
PubMed
CAS
PubMed Central
Google Scholar
Curren Smith EW (2015) Macrophage polarization and its role in cancer. J Clin Cell Immunol 06(04):4–11
Google Scholar
Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Publ Group 8(12):958–969
CAS
Google Scholar
Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages ( defective NF- B and enhanced IRF-3 / STAT1 activation ). Blood 107(5):2112–2122
PubMed
CAS
Google Scholar
Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S (2013) Tumor associated macrophages and neutrophils in cancer. Immunobiology 218(11):1402–1410
PubMed
CAS
Google Scholar
Kumar AT, Knops A, Swendseid B, Martinez-Outschoom U, Harshyne L, Philp N, Rodeck U, Luginbuhl A, Cognetti D, Johnson J, Curry J (2019) Prognostic significance of tumor-associated macrophage content in head and neck squamous cell carcinoma: a meta-analysis. Front Oncol 9:656
PubMed
PubMed Central
Google Scholar
Rőszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm 2015:816460
Google Scholar
Kim S, Cho SW, Min HS, Kim KM, Yeom GJ, Kim EY, Lee KE, Yun YG, Park DJ, Park YJ (2013) The expression of tumor-associated macrophages in papillary thyroid carcinoma. Endocrinol Metab 28(3):192–198
Google Scholar
Jung KY, Cho SW, Kim YA, Kim D, Oh BC, Park DJ, Park YJ (2015) Cancers with higher density of tumor-associated macrophages were associated with poor survival rates. J Pathol Transl Med 49(4):318–324
PubMed
PubMed Central
Google Scholar
Qing W, Fang WY, Ye L, Shen LY, Zhang XF, Fei XC, Chen X, Wang WQ, Li XY, Xiao JC, Ning G (2012) Density of tumor-associated macrophages correlates with lymph node metastasis in papillary thyroid carcinoma. Thyroid 22(9):905–910
PubMed
PubMed Central
CAS
Google Scholar
Ivanova K et al (2018) Immunohistochemical expression of TGF-Β1, SMAD4, SMAD7, TGFβRII and CD68-positive TAM densities in papillary thyroid cancer. Open Access Macedonian J Med Sci 6(3):1–7
CAS
Google Scholar
Huang F-J, Zhou XY, Ye L, Fei XC, Wang S, Wang W, Ning G (2016) Follicular thyroid carcinoma but not adenoma recruits tumor-associated macrophages by releasing CCL15. BMC Cancer 16:98–98
PubMed
PubMed Central
CAS
Google Scholar
Park KH, Lee TH, Kim CW, Kim J (2013) Enhancement of CCL15 expression and monocyte adhesion to endothelial cells (ECs) after hypoxia/reoxygenation and induction of ICAM-1 expression by CCL15 via the JAK2/STAT3 pathway in ECs. J Immunol 190(12):6550–6558
PubMed
CAS
Google Scholar
Shimizu Y, Dobashi K (2012) CC-chemokine CCL15 expression and possible implications for the pathogenesis of IgE-related severe asthma. Mediat Inflamm 2012:475253–475253
Google Scholar
Jolly LA, Massoll N, Franco AT (2016) Immune suppression mediated by myeloid and lymphoid derived immune cells in the tumor microenvironment facilitates progression of thyroid cancers driven by Hras G12V and Pten loss HHS public access. J Clin Cell Immunol:7(5)
Ryder M, Ghossein RA, Ricarte-Filho JCM, Knauf JA, Fagin JA (2008) Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr Relat Cancer 15(4):1069–1074
PubMed
PubMed Central
CAS
Google Scholar
Kim DI et al (2016) Macrophage densities correlated with CXC chemokine receptor 4 expression and related with poor survival in anaplastic thyroid cancer. Endocrinol Metab (Seoul, Korea) 31(3):469–475
CAS
Google Scholar
Pawig L et al (2015) Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front Immunol 6:429–429
PubMed
PubMed Central
Google Scholar
Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13(5):587–596
PubMed
CAS
Google Scholar
Klasen C, Ohl K, Sternkopf M, Shachar I, Schmitz C, Heussen N, Hobeika E, Levit-Zerdoun E, Tenbrock K, Reth M, Bernhagen J, el Bounkari O (2014) MIF promotes B cell chemotaxis through the receptors CXCR4 and CD74 and ZAP-70 signaling. J Immunol 192(11):5273–5284
PubMed
CAS
Google Scholar
Lourenco S, Teixeira VH, Kalber T, Jose RJ, Floto RA, Janes SM (2015) Macrophage migration inhibitory factor–CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J Immunol 194(7):3463–3474
PubMed
CAS
Google Scholar
Shin HN, Moon HH, Ku JL (2012) Stromal cell-derived factor-1alpha and macrophage migration-inhibitory factor induce metastatic behavior in CXCR4-expressing colon cancer cells. Int J Mol Med 30(6):1537–1543
PubMed
CAS
Google Scholar
Simons D, Grieb G, Hristov M, Pallua N, Weber C, Bernhagen J, Steffens G (2011) Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment. J Cell Mol Med 15(3):668–678
PubMed
CAS
Google Scholar
Caillou B, Talbot M, Weyemi U, Pioche-Durieu C, al Ghuzlan A, Bidart JM, Chouaib S, Schlumberger M, Dupuy C (2011) Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma. PLoS One 6(7):e22567
PubMed
PubMed Central
CAS
Google Scholar
Mould RC, van Vloten JP, AuYeung AWK, Karimi K, Bridle BW (2017) Immune responses in the thyroid cancer microenvironment: making immunotherapy a possible mission. Endocr Relat Cancer 24(12):T311–T329
PubMed
CAS
Google Scholar
Ugolini, C., et al., Lymphocyte and immature dendritic cell infiltrates in thyroid carcinoma. 2007. 17(5)
French JD, Weber ZJ, Fretwell DL, Said S, Klopper JP, Haugen BR (2010) Tumor-associated lymphocytes and increased FoxP3+ regulatory T cell frequency correlate with more aggressive papillary thyroid cancer. J Clin Endocrinol Metab 95(5):2325–2333
PubMed
PubMed Central
CAS
Google Scholar
French JD, Kotnis GR, Said S, Raeburn CD, McIntyre RC Jr, Klopper JP, Haugen BR (2012) Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. J Clin Endocrinol Metab 97(6):E934–E943
PubMed
PubMed Central
CAS
Google Scholar
Severson JJ, Serracino HS, Mateescu V, Raeburn CD, McIntyre RC, Sams SB, Haugen BR, French JD (2015) PD-1+Tim-3+ CD8+ T lymphocytes display varied degrees of functional exhaustion in patients with regionally metastatic differentiated thyroid cancer. Cancer Immunol Res 3(6):620–630
PubMed
PubMed Central
CAS
Google Scholar
Cunha LL, Marcello MA, Nonogaki S, Morari EC, Soares FA, Vassallo J, Ward LS (2015) CD8+ tumour-infiltrating lymphocytes and COX2 expression may predict relapse in differentiated thyroid cancer. Clin Endocrinol 83(2):246–253
CAS
Google Scholar
Cunha LL, Morari EC, Guihen ACT, Razolli D, Gerhard R, Nonogaki S, Soares FA, Vassallo J, Ward LS (2012) Infiltration of a mixture of immune cells may be related to good prognosis in patients with differentiated thyroid carcinoma. Clin Endocrinol 77(6):918–925
CAS
Google Scholar
Bastman JJ et al (2016) Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer. J Clin Endocrinol Metab:jc20154227
Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A, Massard C, Fuerea A, Ribrag V, Gazzah A, Armand JP, Amellal N, Angevin E, Noel N, Boutros C, Mateus C, Robert C, Soria JC, Marabelle A, Lambotte O (2016) Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54:139–148
PubMed
CAS
Google Scholar
Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, Postow MA, Wolchok JD (2015) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 26(12):2375–2391
PubMed
PubMed Central
CAS
Google Scholar
Ryder M, Callahan M, Postow MA, Wolchok J, Fagin JA (2014) Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer 21(2):371–381
PubMed
PubMed Central
CAS
Google Scholar
Corsello SM, Barnabei A, Marchetti P, de Vecchis L, Salvatori R, Torino F (2013) Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab 98(4):1361–1375
PubMed
CAS
Google Scholar
Shibue T, Weinberg RA (2009) Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A 106(25):10290–10295
PubMed
PubMed Central
CAS
Google Scholar
Raab-Westphal S, Marshall JF, Goodman SL (2017) Integrins as therapeutic targets: successes and cancers. Cancers 9(9):110
PubMed Central
Google Scholar
Marcinkiewicz C, Weinreb PH, Calvete JJ, Kisiel DG, Mousa SA, Tuszynski GP, Lobb RR (2003) Obtustatin: a potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Res 63(9):2020–2023
PubMed
CAS
Google Scholar
Cirkel GA, Kerklaan BM, Vanhoutte F, der Aa AV, Lorenzon G, Namour F, Pujuguet P, Darquenne S, de Vos FYF, Snijders TJ, Voest EE, Schellens JHM, Lolkema MP (2016) A dose escalating phase I study of GLPG0187, a broad spectrum integrin receptor antagonist, in adult patients with progressive high-grade glioma and other advanced solid malignancies. Investig New Drugs 34(2):184–192
CAS
Google Scholar
Gaggioli C, Robert G, Bertolotto C, Bailet O, Abbe P, Spadafora A, Bahadoran P, Ortonne JP, Baron V, Ballotti R, Tartare-Deckert S (2007) Tumor-derived fibronectin is involved in melanoma cell invasion and regulated by V600E B-Raf signaling pathway. J Investig Dermatol 127(2):400–410
PubMed
CAS
Google Scholar
Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, Hayward SW, Li D, Webb DJ (2017) Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J Cell Biol 216(11):3799–3816
PubMed
PubMed Central
CAS
Google Scholar
Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, Wen PY, Zielinski C, Cabanillas ME, Urbanowitz G, Mookerjee B, Wang D, Rangwala F, Keam B (2018) Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol 36(1):7–13
PubMed
CAS
Google Scholar