Advertisement

Hormones and Cancer

, Volume 9, Issue 2, pp 108–116 | Cite as

Mechanisms Linking Obesity and Thyroid Cancer Development and Progression in Mouse Models

  • Won Gu Kim
  • Sheue-yann Cheng
Review

Abstract

Recent compelling epidemiological studies indicate a strong association of obesity with thyroid cancer. Obesity has been shown to promote thyroid cancer progression and exacerbate poor outcome in thyroid cancer patients. However, the molecular mechanisms by which obesity increases thyroid cancer risk and facilitates cancer progression are not completely understood. Obesity induces complex pathological changes including hyperglycemia, hyperinsulinemia, hyperlipidemia, oxidative stress, adipokines, and inflammatory responses. These changes can affect the development and progression of cancer through highly complex interactions in vivo. The deleterious effect of obesity may differ according to the different cancer types. In view of the increased incidence of thyroid cancer in parallel with the widespread occurrence of obesity in the past decades, it is imperative to clarify how obesity affects thyroid carcinogenesis. This review focuses on molecular mechanisms by which obesity aggravates thyroid carcinogenesis as elucidated by mouse models of thyroid cancer.

Notes

Acknowledgments

We regret any reference omissions due to length limitation. We wish to thank all colleagues and collaborators who have contributed to the work described in this review. The research described in this review by the authors and their colleagues at the National Cancer Institute was supported by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health.

References

  1. 1.
    Kitahara CM, Sosa JA (2016) The changing incidence of thyroid cancer. Nat Rev Endocrinol 12(11):646–653.  https://doi.org/10.1038/nrendo.2016.110 CrossRefPubMedGoogle Scholar
  2. 2.
    Davies L, Welch HG (2006) Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA 295(18):2164–2167.  https://doi.org/10.1001/jama.295.18.2164 CrossRefPubMedGoogle Scholar
  3. 3.
    Chen AY, Jemal A, Ward EM (2009) Increasing incidence of differentiated thyroid cancer in the United States, 1988-2005. Cancer 115(16):3801–3807.  https://doi.org/10.1002/cncr.24416 CrossRefPubMedGoogle Scholar
  4. 4.
    Ahn HS, Kim HJ, Welch HG (2014) Korea’s thyroid-cancer “epidemic”—screening and overdiagnosis. N Engl J Med 371(19):1765–1767.  https://doi.org/10.1056/NEJMp1409841 CrossRefPubMedGoogle Scholar
  5. 5.
    Kilfoy BA, Zheng T, Holford TR, Han X, Ward MH, Sjodin A, Zhang Y, Bai Y, Zhu C, Guo GL, Rothman N, Zhang Y (2009) International patterns and trends in thyroid cancer incidence, 1973-2002. Cancer Causes Control 20(5):525–531.  https://doi.org/10.1007/s10552-008-9260-4 CrossRefPubMedGoogle Scholar
  6. 6.
    Udelsman R, Zhang Y (2014) The epidemic of thyroid cancer in the United States: the role of endocrinologists and ultrasounds. Thyroid 24(3):472–479.  https://doi.org/10.1089/thy.2013.0257 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE, Devesa SS (2009) Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980-2005. Cancer Epidemiol Biomark Prev 18(3):784–791.  https://doi.org/10.1158/1055-9965.EPI-08-0960 CrossRefGoogle Scholar
  8. 8.
    Brito JP, Gionfriddo M, Morris JC, Montori VM (2014) Overdiagnosis of thyroid cancer and graves’ disease. Thyroid 24(2):402–403.  https://doi.org/10.1089/thy.2013.0425 CrossRefPubMedGoogle Scholar
  9. 9.
    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371(9612):569–578.  https://doi.org/10.1016/S0140-6736(08)60269-X CrossRefPubMedGoogle Scholar
  10. 10.
    Kitahara CM, Platz EA, Freeman LE, Hsing AW, Linet MS, Park Y, Schairer C, Schatzkin A, Shikany JM, Berrington de Gonzalez A (2011) Obesity and thyroid cancer risk among U.S. men and women: a pooled analysis of five prospective studies. Cancer Epidemiol Biomark Prev 20(3):464–472.  https://doi.org/10.1158/1055-9965.EPI-10-1220 CrossRefGoogle Scholar
  11. 11.
    Han JM, Kim TY, Jeon MJ, Yim JH, Kim WG, Song DE, Hong SJ, Bae SJ, Kim HK, Shin MH, Shong YK, Kim WB (2013) Obesity is a risk factor for thyroid cancer in a large, ultrasonographically screened population. Eur J Endocrinol 168(6):879–886.  https://doi.org/10.1530/EJE-13-0065 CrossRefPubMedGoogle Scholar
  12. 12.
    Ma J, Huang M, Wang L, Ye W, Tong Y, Wang H (2015) Obesity and risk of thyroid cancer: evidence from a meta-analysis of 21 observational studies. Med Sci Monit:21283–21291Google Scholar
  13. 13.
    Schmid D, Ricci C, Behrens G, Leitzmann MF (2015) Adiposity and risk of thyroid cancer: a systematic review and meta-analysis. Obes Rev 16(12):1042–1054.  https://doi.org/10.1111/obr.12321 CrossRefPubMedGoogle Scholar
  14. 14.
    Kitahara CM, McCullough ML, Franceschi S, Rinaldi S, Wolk A, Neta G, Olov Adami H, Anderson K, Andreotti G, Beane Freeman LE, Bernstein L, Buring JE, Clavel-Chapelon F, De Roo LA, Gao YT, Gaziano JM, Giles GG, Hakansson N, Horn-Ross PL, Kirsh VA, Linet MS, MacInnis RJ, Orsini N, Park Y, Patel AV, Purdue MP, Riboli E, Robien K, Rohan T, Sandler DP, Schairer C, Schneider AB, Sesso HD, Shu XO, Singh PN, van den Brandt PA, Ward E, Weiderpass E, White E, Xiang YB, Zeleniuch-Jacquotte A, Zheng W, Hartge P, de Gonzalez AB (2016) Anthropometric factors and thyroid cancer risk by histological subtype: pooled analysis of 22 prospective studies. Thyroid 26(2):306–318.  https://doi.org/10.1089/thy.2015.0319 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kim HJ, Kim NK, Choi JH, Sohn SY, Kim SW, Jin SM, Jang HW, Suh S, Min YK, Chung JH, Kim SW (2013) Associations between body mass index and clinico-pathological characteristics of papillary thyroid cancer. Clin Endocrinol 78(1):134–140.  https://doi.org/10.1111/j.1365-2265.2012.04506.x CrossRefGoogle Scholar
  16. 16.
    Tresallet C, Seman M, Tissier F, Buffet C, Lupinacci RM, Vuarnesson H, Leenhardt L, Menegaux F (2014) The incidence of papillary thyroid carcinoma and outcomes in operative patients according to their body mass indices. Surgery 156(5):1145–1152.  https://doi.org/10.1016/j.surg.2014.04.020 CrossRefPubMedGoogle Scholar
  17. 17.
    Choi JS, Kim EK, Moon HJ, Kwak JY (2015) Higher body mass index may be a predictor of extrathyroidal extension in patients with papillary thyroid microcarcinoma. Endocrine 48(1):264–271.  https://doi.org/10.1007/s12020-014-0293-z CrossRefPubMedGoogle Scholar
  18. 18.
    Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83(2):461S–465SCrossRefPubMedGoogle Scholar
  19. 19.
    Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, Kazlauskaite R, Pankratz DG, Wynshaw-Boris A, Refetoff S, Weintraub B, Willingham MC, Barlow C, Cheng S (2000) Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A 97(24):13209–13214.  https://doi.org/10.1073/pnas.230285997 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Suzuki H, Willingham MC, Cheng SY (2002) Mice with a mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid 12(11):963–969.  https://doi.org/10.1089/105072502320908295 CrossRefPubMedGoogle Scholar
  21. 21.
    Guigon CJ, Zhao L, Willingham MC, Cheng SY (2009) PTEN deficiency accelerates tumour progression in a mouse model of thyroid cancer. Oncogene 28(4):509–517.  https://doi.org/10.1038/onc.2008.407 CrossRefPubMedGoogle Scholar
  22. 22.
    Kim WG, Park JW, Willingham MC, Cheng SY (2013) Diet-induced obesity increases tumor growth and promotes anaplastic change in thyroid cancer in a mouse model. Endocrinology 154(8):2936–2947.  https://doi.org/10.1210/en.2013-1128 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, Schultz N, Berger MF, Sander C, Taylor BS, Ghossein R, Ganly I, Fagin JA (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126(3):1052–1066.  https://doi.org/10.1172/JCI85271 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jeon MJ, Chun SM, Kim D, Kwon H, Jang EK, Kim TY, Kim WB, Shong YK, Jang SJ, Song DE, Kim WG (2016) Genomic alterations of anaplastic thyroid carcinoma detected by targeted massive parallel sequencing in a BRAF(V600E) mutation-prevalent area. Thyroid 26(5):683–690.  https://doi.org/10.1089/thy.2015.0506 CrossRefPubMedGoogle Scholar
  25. 25.
    Enomoto K, Zhu X, Park S, Zhao L, Zhu YJ, Willingham MC, Qi J, Copland JA, Meltzer P, Cheng SY (2017) Targeting MYC as a therapeutic intervention for anaplastic thyroid cancer. J Clin Endocrinol Metab 102(7):2268–2280.  https://doi.org/10.1210/jc.2016-3771 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhu X, Enomoto K, Zhao L, Zhu YJ, Willingham MC, Meltzer P, Qi J, Cheng SY (2017) Bromodomain and extraterminal protein inhibitor JQ1 suppresses thyroid tumor growth in a mouse model. Clin Cancer Res 23(2):430–440.  https://doi.org/10.1158/1078-0432.CCR-16-0914 CrossRefPubMedGoogle Scholar
  27. 27.
    Cao H (2014) Adipocytokines in obesity and metabolic disease. J Endocrinol 220(2):T47–T59.  https://doi.org/10.1530/JOE-13-0339 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Khandekar MJ, Cohen P, Spiegelman BM (2011) Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11(12):886–895.  https://doi.org/10.1038/nrc3174 CrossRefPubMedGoogle Scholar
  29. 29.
    Vansaun MN (2013) Molecular pathways: adiponectin and leptin signaling in cancer. Clin Cancer Res 19(8):1926–1932.  https://doi.org/10.1158/1078-0432.CCR-12-0930 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hebbard L, Ranscht B (2014) Multifaceted roles of adiponectin in cancer. Best Pract Res Clin Endocrinol Metab 28(1):59–69.  https://doi.org/10.1016/j.beem.2013.11.005 CrossRefPubMedGoogle Scholar
  31. 31.
    Cheng SP, Chi CW, Tzen CY, Yang TL, Lee JJ, Liu TP, Liu CL (2010) Clinicopathologic significance of leptin and leptin receptor expressions in papillary thyroid carcinoma. Surgery 147(6):847–853.  https://doi.org/10.1016/j.surg.2009.11.004 CrossRefPubMedGoogle Scholar
  32. 32.
    Cheng SP, Liu CL, Hsu YC, Chang YC, Huang SY, Lee JJ (2012) Regulation of leptin receptor expression in human papillary thyroid cancer cells. Biomed Pharmacother 66(6):469–473.  https://doi.org/10.1016/j.biopha.2012.03.008 CrossRefPubMedGoogle Scholar
  33. 33.
    Uddin S, Bavi P, Siraj AK, Ahmed M, Al-Rasheed M, Hussain AR, Ahmed M, Amin T, Alzahrani A, Al-Dayel F, Abubaker J, Bu R, Al-Kuraya KS (2010) Leptin-R and its association with PI3K/AKT signaling pathway in papillary thyroid carcinoma. Endocr Relat Cancer 17(1):191–202.  https://doi.org/10.1677/ERC-09-0153 CrossRefPubMedGoogle Scholar
  34. 34.
    Cheng SP, Yin PH, Hsu YC, Chang YC, Huang SY, Lee JJ, Chi CW (2011) Leptin enhances migration of human papillary thyroid cancer cells through the PI3K/AKT and MEK/ERK signaling pathways. Oncol Rep 26(5):1265–1271.  https://doi.org/10.3892/or.2011.1388 PubMedGoogle Scholar
  35. 35.
    Yang YC, Chin YT, Hsieh MT, Lai HY, Ke CC, Crawford DR, Lee OK, Fu E, Mousa SA, Grasso P, Liu LF, Chang HY, Tang HY, Lin HY, Davis PJ (2016) Novel leptin OB3 peptide-induced signaling and progression in thyroid cancers: comparison with leptin. Oncotarget 7(19):27641–27654.  https://doi.org/10.18632/oncotarget.8505 PubMedPubMedCentralGoogle Scholar
  36. 36.
    Lee DW, Leinung MC, Grasso P (2010) Oral delivery of mouse [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, in male Swiss Webster mice: a study comparing the pharmacokinetics of oral delivery to intraperitoneal, subcutaneous, intramuscular, and intranasal administration. Regul Pept 160(1–3):129–132.  https://doi.org/10.1016/j.regpep.2009.12.008 CrossRefPubMedGoogle Scholar
  37. 37.
    Novakovic ZM, Leinung MC, Grasso P (2013) [D-Leu-4]-OB3, an orally bioavailable leptin-related synthetic peptide insulin sensitizer: a study comparing the efficacies of [D-Leu-4]-OB3 and metformin on energy balance and glycemic regulation in insulin-deficient male Swiss Webster mice. Peptides:43167–43173Google Scholar
  38. 38.
    Chin YT, Wang LM, Hsieh MT, Shih YJ, Nana AW, Changou CA, Yang YSH, Chiu HC, Fu E, Davis PJ, Tang HY, Lin HY (2017) Leptin OB3 peptide suppresses leptin-induced signaling and progression in ovarian cancer cells. J Biomed Sci 24(1):51.  https://doi.org/10.1186/s12929-017-0356-6 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yu H, Jove R (2004) The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 4(2):97–105.  https://doi.org/10.1038/nrc1275 CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang J, Gill A, Atmore B, Johns A, Delbridge L, Lai R, McMullen T (2011) Upregulation of the signal transducers and activators of transcription 3 (STAT3) pathway in lymphatic metastases of papillary thyroid cancer. Int J Clin Exp Pathol 4(4):356–362PubMedPubMedCentralGoogle Scholar
  41. 41.
    Dong W, Cui J, Tian X, He L, Wang Z, Zhang P, Zhang H (2014) Aberrant sonic hedgehog signaling pathway and STAT3 activation in papillary thyroid cancer. Int J Clin Exp Med 7(7):1786–1793PubMedPubMedCentralGoogle Scholar
  42. 42.
    Park JW, Han CR, Zhao L, Willingham MC, Cheng SY (2016) Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model. Endocr Relat Cancer 23(1):53–63.  https://doi.org/10.1530/ERC-15-0417 CrossRefPubMedGoogle Scholar
  43. 43.
    Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip ML, Jove R, McLaughlin MM, Lawrence NJ, Sebti SM, Turkson J (2007) Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A 104(18):7391–7396.  https://doi.org/10.1073/pnas.0609757104 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhang X, Yue P, Page BD, Li T, Zhao W, Namanja AT, Paladino D, Zhao J, Chen Y, Gunning PT, Turkson J (2012) Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc Natl Acad Sci U S A 109(24):9623–9628.  https://doi.org/10.1073/pnas.1121606109 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Dowling RJ, Niraula S, Stambolic V, Goodwin PJ (2012) Metformin in cancer: translational challenges. J Mol Endocrinol 48(3):R31–R43.  https://doi.org/10.1530/JME-12-0007 CrossRefPubMedGoogle Scholar
  46. 46.
    Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67(22):10804–10812.  https://doi.org/10.1158/0008-5472.CAN-07-2310 CrossRefPubMedGoogle Scholar
  47. 47.
    Dowling RJ, Goodwin PJ, Stambolic V (2011) Understanding the benefit of metformin use in cancer treatment. BMC Med 933Google Scholar
  48. 48.
    Hadad S, Iwamoto T, Jordan L, Purdie C, Bray S, Baker L, Jellema G, Deharo S, Hardie DG, Pusztai L, Moulder-Thompson S, Dewar JA, Thompson AM (2011) Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat 128(3):783–794.  https://doi.org/10.1007/s10549-011-1612-1 CrossRefPubMedGoogle Scholar
  49. 49.
    Niraula S, Dowling RJ, Ennis M, Chang MC, Done SJ, Hood N, Escallon J, Leong WL, McCready DR, Reedijk M, Stambolic V, Goodwin PJ (2012) Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res Treat 135(3):821–830.  https://doi.org/10.1007/s10549-012-2223-1 CrossRefPubMedGoogle Scholar
  50. 50.
    Hosono K, Endo H, Takahashi H, Sugiyama M, Sakai E, Uchiyama T, Suzuki K, Iida H, Sakamoto Y, Yoneda K, Koide T, Tokoro C, Abe Y, Inamori M, Nakagama H, Nakajima A (2010) Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev Res (Phila) 3(9):1077–1083.  https://doi.org/10.1158/1940-6207.CAPR-10-0186 CrossRefGoogle Scholar
  51. 51.
    Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S (2010) Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila) 3(11):1451–1461.  https://doi.org/10.1158/1940-6207.CAPR-10-0157 CrossRefGoogle Scholar
  52. 52.
    Zhang P, Li H, Tan X, Chen L, Wang S (2013) Association of metformin use with cancer incidence and mortality: a meta-analysis. Cancer Epidemiol 37(3):207–218.  https://doi.org/10.1016/j.canep.2012.12.009 CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang ZJ, Li S (2014) The prognostic value of metformin for cancer patients with concurrent diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 16(8):707–710.  https://doi.org/10.1111/dom.12267 CrossRefPubMedGoogle Scholar
  54. 54.
    Coyle C, Cafferty FH, Vale C, Langley RE (2016) Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol 27(12):2184–2195.  https://doi.org/10.1093/annonc/mdw410 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Klubo-Gwiezdzinska J, Costello J, Jr., Patel A, Bauer A, Jensen K, Mete M, Burman KD, Wartofsky L, Vasko V (2013) Treatment with metformin is associated with higher remission rate in diabetic patients with thyroid cancer. J Clin Endocrinol Metab 98(8):3269–3279, DOI:  https://doi.org/10.1210/jc.2012-3799
  56. 56.
    Jang EK, Kim WG, Kwon H, Choi YM, Jeon MJ, Kim TY, Shong YK, Kim WB, Kim EY (2015) Metformin is associated with a favorable outcome in diabetic patients with cervical lymph node metastasis of differentiated thyroid cancer. Eur Thyroid J 4(3):181–188.  https://doi.org/10.1159/000437365 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chen G, Xu S, Renko K, Derwahl M (2012) Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab 97(4):E510–E520.  https://doi.org/10.1210/jc.2011-1754 CrossRefPubMedGoogle Scholar
  58. 58.
    Klubo-Gwiezdzinska J, Jensen K, Costello J, Patel A, Hoperia V, Bauer A, Burman KD, Wartofsky L, Vasko V (2012) Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells. Endocr Relat Cancer 19(3):447–456.  https://doi.org/10.1530/ERC-12-0046 CrossRefPubMedGoogle Scholar
  59. 59.
    Shen CT, Wei WJ, Qiu ZL, Song HJ, Zhang XY, Sun ZK, Luo QY (2017) Metformin reduces glycometabolism of papillary thyroid carcinoma in vitro and in vivo. J Mol Endocrinol 58(1):15–23.  https://doi.org/10.1530/JME-16-0134 CrossRefPubMedGoogle Scholar
  60. 60.
    Han B, Cui H, Kang L, Zhang X, Jin Z, Lu L, Fan Z (2015) Metformin inhibits thyroid cancer cell growth, migration, and EMT through the mTOR pathway. Tumour Biol 36(8):6295–6304.  https://doi.org/10.1007/s13277-015-3315-4 CrossRefPubMedGoogle Scholar
  61. 61.
    Park J, Kim WG, Zhao L, Enomoto K, Willingham M, Cheng SY (2016) Metformin blocks progression of obesity-activated thyroid cancer in a mouse model. Oncotarget 7(23):34832–34844.  https://doi.org/10.18632/oncotarget.8989 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Li Z, Shen J, WK W, Yu X, Liang J, Qiu G, Liu J (2012) Leptin induces cyclin D1 expression and proliferation of human nucleus pulposus cells via JAK/STAT, PI3K/Akt and MEK/ERK pathways. PLoS One 7(12):e53176.  https://doi.org/10.1371/journal.pone.0053176 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bendell JC, Hong DS, Burris HA 3rd, Naing A, Jones SF, Falchook G, Bricmont P, Elekes A, Rock EP, Kurzrock R (2014) Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother Pharmacol 74(1):125–130.  https://doi.org/10.1007/s00280-014-2480-2 CrossRefPubMedGoogle Scholar
  64. 64.
    DY O, Lee SH, Han SW, Kim MJ, Kim TM, Kim TY, Heo DS, Yuasa M, Yanagihara Y, Bang YJ (2015) Phase I Study of OPB-31121, an oral STAT3 inhibitor, in patients with advanced solid tumors. Cancer Res Treat 47(4):607–615CrossRefGoogle Scholar
  65. 65.
    Okusaka T, Ueno H, Ikeda M, Mitsunaga S, Ozaka M, Ishii H, Yokosuka O, Ooka Y, Yoshimoto R, Yanagihara Y, Okita K (2015) Phase 1 and pharmacological trial of OPB-31121, a signal transducer and activator of transcription-3 inhibitor, in patients with advanced hepatocellular carcinoma. Hepatol Res 45(13):1283–1291CrossRefPubMedGoogle Scholar
  66. 66.
    Wong AL, Soo RA, Tan DS, Lee SC, Lim JS, Marban PC, Kong LR, Lee YJ, Wang LZ, Thuya WL, Soong R, Yee MQ, Chin TM, Cordero MT, Asuncion BR, Pang B, Pervaiz S, Hirpara JL, Sinha A, WW X, Yuasa M, Tsunoda T, Motoyama M, Yamauchi T, Goh BC (2015) Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies. Ann Oncol 26(5):998–1005.  https://doi.org/10.1093/annonc/mdv026 CrossRefPubMedGoogle Scholar
  67. 67.
    Ogura M, Uchida T, Terui Y, Hayakawa F, Kobayashi Y, Taniwaki M, Takamatsu Y, Naoe T, Tobinai K, Munakata W, Yamauchi T, Kageyama A, Yuasa M, Motoyama M, Tsunoda T, Hatake K (2015) Phase I study of OPB-51602, an oral inhibitor of signal transducer and activator of transcription 3, in patients with relapsed/refractory hematological malignancies. Cancer Sci 106(7):896–901CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sen M, Thomas SM, Kim S, Yeh JI, Ferris RL, Johnson JT, Duvvuri U, Lee J, Sahu N, Joyce S, Freilino ML, Shi H, Li C, Ly D, Rapireddy S, Etter JP, Li PK, Wang L, Chiosea S, Seethala RR, Gooding WE, Chen X, Kaminski N, Pandit K, Johnson DE, Grandis JR (2012) First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov 2(8):694–705.  https://doi.org/10.1158/2159-8290.CD-12-0191 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N, Zhou T, Schmidt J, Jo M, Lee SJ, Yamashita M, Hughes SG, Fayad L, Piha-Paul S, Nadella MV, Mohseni M, Lawson D, Reimer C, Blakey DC, Xiao X, Hsu J, Revenko A, Monia BP, MacLeod AR (2015) AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med 7(314):314ra185.  https://doi.org/10.1126/scitranslmed.aac5272 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature (outside the USA) 2018

Authors and Affiliations

  1. 1.Laboratory of Molecular Biology, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA
  2. 2.Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea

Personalised recommendations