Advertisement

Hormones and Cancer

, Volume 9, Issue 2, pp 95–107 | Cite as

The Two Faces of Adjuvant Glucocorticoid Treatment in Ovarian Cancer

  • Vladimir Djedovic
  • Yoo-Young Lee
  • Alexandra Kollara
  • Taymaa May
  • Theodore J. Brown
Review

Abstract

Adjuvant glucocorticoid treatment is routinely used in the treatment of ovarian cancer to mitigate the undesirable side effects of chemotherapy, thereby enhancing tolerability to higher cytotoxic drug doses and frequency of treatment cycles. However, in vitro and preclinical in vivo and ex vivo studies indicate that glucocorticoids may spare tumor cells from undergoing cell death through enhanced cell adhesion, promotion of anti-inflammatory signaling, and/or inhibition of apoptotic pathways. The implications of laboratory studies showing potential negative impact on the efficacy of chemotherapy have been long overlooked since clinical investigations have found no apparent survival detriment attributable to adjuvant glucocorticoid use. Importantly, these clinical studies were not randomized and most did not consider glucocorticoid receptor status, a vital determinant of tumor response to glucocorticoid administration. Additionally, the clinically beneficial elements of increased chemotherapy treatment adherence and dosing afforded by adjuvant glucocorticoids may offset and therefore mask their anti-chemotherapy activities. This review summarizes the current evidence on the impact of glucocorticoids in ovarian cancer and discusses the need for further research and development of alternative strategies to ameliorate untoward side effects of chemotherapy.

Notes

Acknowledgements

Supported by Canadian Institutes of Health Research grants MOP142364 and MOP106679.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386.  https://doi.org/10.1002/ijc.29210 PubMedCrossRefGoogle Scholar
  2. 2.
    Devlin SM, Diehr PH, Andersen MR, Goff BA, Tyree PT, Lafferty WE (2010) Identification of ovarian cancer symptoms in health insurance claims data. J Women's Health (Larchmt) 19(3):381–389.  https://doi.org/10.1089/jwh.2009.1550 CrossRefGoogle Scholar
  3. 3.
    Maringe C, Walters S, Butler J, Coleman MP, Hacker N, Hanna L, Mosgaard BJ, Nordin A, Rosen B, Engholm G, Gjerstorff ML, Hatcher J, Johannesen TB, McGahan CE, Meechan D, Middleton R, Tracey E, Turner D, Richards MA, Rachet B, ICBP Module 1 Working Group (2012) Stage at diagnosis and ovarian cancer survival: evidence from the International Cancer Benchmarking Partnership. Gynecol Oncol 127(1):75–82.  https://doi.org/10.1016/j.ygyno.2012.06.033 PubMedCrossRefGoogle Scholar
  4. 4.
    Chang SJ, Bristow RE, Chi DS, Cliby WA (2015) Role of aggressive surgical cytoreduction in advanced ovarian cancer. J Gynecol Oncol 26(4):336–342.  https://doi.org/10.3802/jgo.2015.26.4.336 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Elattar A, Bryant A, Winter-Roach BA, Hatem M, Naik R. (2011) Optimal primary surgical treatment for advanced epithelial ovarian cancer. Cochrane Database Syst Rev CD007565Google Scholar
  6. 6.
    Agarwal R, Kaye SB (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3(7):502–516.  https://doi.org/10.1038/nrc1123 PubMedCrossRefGoogle Scholar
  7. 7.
    Rubin SC, Randall TC, Armstrong KA, Chi DS, Hoskins WJ (1999) Ten-year follow-up of ovarian cancer patients after second-look laparotomy with negative findings. Obstet Gynecol 93(1):21–24PubMedGoogle Scholar
  8. 8.
    Winter WE 3rd, Maxwell GL, Tian C, Sundborg MJ, Rose GS, Rose PG et al (2008) Tumor residual after surgical cytoreduction in prediction of clinical outcome in stage IV epithelial ovarian cancer: a gynecologic oncology group study. J Clin Oncol 26:83–89PubMedCrossRefGoogle Scholar
  9. 9.
    Rutz HP (2002) Effects of corticosteroid use on treatment of solid tumours. Lancet 360(9349):1969–1970.  https://doi.org/10.1016/S0140-6736(02)11922-2 PubMedCrossRefGoogle Scholar
  10. 10.
    Rutz HP, Herr I (2004) Interference of glucocorticoids with apoptosis signaling and host–tumor interactions. Cancer Biol Ther 3:315–318Google Scholar
  11. 11.
    Herr I, Ucur E, Herzer K, Okouoyo S, Ridder R, Krammer PH, von Knebel Doeberitz M, Debatin KM (2003) Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res 63(12):3112–3120PubMedGoogle Scholar
  12. 12.
    Sherlock P, Hartmann H (1962) Adrenal steroids and the pattern of metastasis of breast cancer. JAMA 181(4):313–317.  https://doi.org/10.1001/jama.1962.03050300033007 PubMedCrossRefGoogle Scholar
  13. 13.
    Iversen HG, Hjort GH (1958) The influence of corticoid steroids on the frequency of spleen metastasis in patients with breast cancer. Acta Pathologica Microbiologica Scandinavica 44:205–212CrossRefGoogle Scholar
  14. 14.
    Sui M, Chen F, Chen Z, Fan W (2006) Glucocorticoids interfere with therapeutic efficacy of paclitaxel against human breast and ovarian xenograft tumors. Int J Cancer 119(3):712–717.  https://doi.org/10.1002/ijc.21743 PubMedCrossRefGoogle Scholar
  15. 15.
    Flammer JR, Rogatsky I (2011) Minireview: glucocorticoids in autoimmunity: unexpected targets and mechanisms. Mol Endocrinol 25(7):1075–1086.  https://doi.org/10.1210/me.2011-0068 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 335(1):2–13.  https://doi.org/10.1016/j.mce.2010.04.005 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Smith LK, Cidlowski JA (2010) Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes. Prog Brain Res 182:1–30.  https://doi.org/10.1016/S0079-6123(10)82001-1 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, de Bosscher K (2013) How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol 380(1-2):41–54.  https://doi.org/10.1016/j.mce.2012.12.014 PubMedCrossRefGoogle Scholar
  19. 19.
    Oakley RH, Cidlowski JA (2013) The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 132(5):1033–1044.  https://doi.org/10.1016/j.jaci.2013.09.007 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Oakley RH, Sar M, Cidlowski JA (1996) The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J Biol Chem 271(16):9550–9559.  https://doi.org/10.1074/jbc.271.16.9550 PubMedCrossRefGoogle Scholar
  21. 21.
    Kino T, Manoli I, Kelkar S, Wang Y, YA S, Chrousos GP (2009) Glucocorticoid receptor (GR) beta has intrinsic, GRalpha-independent transcriptional activity. Biochem Biophys Res Commun 381(4):671–675.  https://doi.org/10.1016/j.bbrc.2009.02.110 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Thomas-Chollier M, Watson LC, Cooper SB, Pufall MA, Liu JS, Borzym K, Vingron M, Yamamoto KR, Meijsing SH (2013) A naturally occurring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms. Proc Natl Acad Sci U S A 110(44):17826–17831.  https://doi.org/10.1073/pnas.1316235110 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Moalli PA, Pillay S, Krett NL, Rosen ST (1993) Alternatively spliced glucocorticoid receptor messenger RNAs in glucocorticoid-resistant human multiple myeloma cells. Cancer Res 53(17):3877–3879PubMedGoogle Scholar
  24. 24.
    de Lange P, Segeren CM, Koper JW, Wiemer E, Sonneveld P, Brinkmann AO, White A, Brogan IJ, de Jong FH, Lamberts SW (2001) Expression in hematological malignancies of a glucocorticoid receptor splice variant that augments glucocorticoid receptor-mediated effects in transfected cells. Cancer Res 61(10):3937–3941PubMedGoogle Scholar
  25. 25.
    Krett NL, Pillay S, Moalli PA, Greipp PR, Rosen ST (1995) A variant glucocorticoid receptor messenger RNA is expressed in multiple myeloma patients. Cancer Res 55(13):2727–2729PubMedGoogle Scholar
  26. 26.
    Gaitan D, DeBold CR, Turney MK, Zhou P, Orth DN, Kovacs WJ (1995) Glucocorticoid receptor structure and function in an adrenocorticotropin-secreting small cell lung cancer. Mol Endocrinol 9(9):1193–1201.  https://doi.org/10.1210/mend.9.9.7491111 PubMedGoogle Scholar
  27. 27.
    Oakley RH, Cidlowski JA (2011) Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem 286(5):3177–3184.  https://doi.org/10.1074/jbc.R110.179325 PubMedCrossRefGoogle Scholar
  28. 28.
    NZ L, Cidlowski JA (2005) Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol Cell 18:331–342CrossRefGoogle Scholar
  29. 29.
    Ramamoorthy S, Cidlowski JA (2013) Exploring the molecular mechanisms of glucocorticoid receptor action from sensitivity to resistance. Endocr Dev 24:41–56.  https://doi.org/10.1159/000342502 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR (2017) Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 18(3):159–174.  https://doi.org/10.1038/nrm.2016.152 PubMedCrossRefGoogle Scholar
  31. 31.
    Krozowski Z, Li KX, Koyama K, Smith RE, Obeyesekere VR, Stein-Oakley A et al (1999) The type I and type II 11beta-hydroxysteroid dehydrogenase enzymes. J Steroid Biochem Mol Biol 69(1-6):391–401.  https://doi.org/10.1016/S0960-0760(99)00074-6 PubMedCrossRefGoogle Scholar
  32. 32.
    Martin PM, Rolland PH, Raynaud JP (1981) Macromolecular binding of dexamethasone as evidence for the presence of mineralocorticoid receptor in human breast cancer. Cancer Res 41(3):1222–1226PubMedGoogle Scholar
  33. 33.
    Jordan K, Sippel C, Schmoll HJ (2007) Guidelines for antiemetic treatment of chemotherapy-induced nausea and vomiting: past, present, and future recommendations. Oncologist 12(9):1143–1150.  https://doi.org/10.1634/theoncologist.12-9-1143 PubMedCrossRefGoogle Scholar
  34. 34.
    Italian Group for Antiemetic R (1995) Dexamethasone, granisetron, or both for the prevention of nausea and vomiting during chemotherapy for cancer. N Engl J Med 332:1–5CrossRefGoogle Scholar
  35. 35.
    Italian Group for Antiemetic R (2000) Dexamethasone alone or in combination with ondansetron for the prevention of delayed nausea and vomiting induced by chemotherapy. N Engl J Med 342:1554–1559CrossRefGoogle Scholar
  36. 36.
    Pufall MA (2015) Glucocorticoids and cancer. Adv Exp Med Biol 872:315–333.  https://doi.org/10.1007/978-1-4939-2895-8_14 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Boulanger J, Boursiquot JN, Cournoyer G, Lemieux J, Masse MS, Almanric K, Guay MP, Comité de l’évolution des pratiques en oncologie (2014) Management of hypersensitivity to platinum- and taxane-based chemotherapy: cepo review and clinical recommendations. Curr Oncol 21(4):e630–e641.  https://doi.org/10.3747/co.21.1966 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Schwartz JR (2012) Dexamethasone premedication for prophylaxis of taxane toxicities: can the doses be reduced when paclitaxel or docetaxel are given weekly? J Oncol Pharm Pract 18(2):250–256.  https://doi.org/10.1177/1078155211409473 PubMedCrossRefGoogle Scholar
  39. 39.
    Munstedt K, Borces D, Bohlmann MK, Zygmunt M, von Georgi R (2004) Glucocorticoid administration in antiemetic therapy: is it safe? Cancer 101(7):1696–1702.  https://doi.org/10.1002/cncr.20534 PubMedCrossRefGoogle Scholar
  40. 40.
    Bruera E, Roca E, Cedaro L, Carraro S, Chacon R (1985) Action of oral methylprednisolone in terminal cancer patients: a prospective randomized double-blind study. Cancer Treat Rep 69(7-8):751–754PubMedGoogle Scholar
  41. 41.
    De Camp G (1961) Corticosteroid therapy in bronchial carcinoma and other malignant tumors in the thorax. Munch Med Wochenschr [trans] 103:2026–2030Google Scholar
  42. 42.
    Keith BD (2008) Systematic review of the clinical effect of glucocorticoids on nonhematologic malignancy. BMC Cancer 8(1):84.  https://doi.org/10.1186/1471-2407-8-84 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Melhem A, Yamada SD, Fleming GF, Delgado B, Brickley DR, Wu W, Kocherginsky M, Conzen SD (2009) Administration of glucocorticoids to ovarian cancer patients is associated with expression of the anti-apoptotic genes SGK1 and MKP1/DUSP1 in ovarian tissues. Clin Cancer Res 15(9):3196–3204.  https://doi.org/10.1158/1078-0432.CCR-08-2131 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Plengvanit U, Viranuvatti V (1964) Treatment of primary carcinoma of the liver with nitrogen mustard and prednisolone: report of 51 cases. Am J Gastroenterol 42:521–528PubMedGoogle Scholar
  45. 45.
    Runnebaum IB, Bruning A (2005) Glucocorticoids inhibit cell death in ovarian cancer and up-regulate caspase inhibitor cIAP2. Clin Cancer Res 11(17):6325–6332.  https://doi.org/10.1158/1078-0432.CCR-05-0182 PubMedCrossRefGoogle Scholar
  46. 46.
    Stringer-Reasor EM, Baker GM, Skor MN, Kocherginsky M, Lengyel E, Fleming GF, Conzen SD (2015) Glucocorticoid receptor activation inhibits chemotherapy-induced cell death in high-grade serous ovarian carcinoma. Gynecol Oncol 138(3):656–662.  https://doi.org/10.1016/j.ygyno.2015.06.033 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhang C, Marme A, Wenger T, Gutwein P, Edler L, Rittgen W et al (2006) Glucocorticoid-mediated inhibition of chemotherapy in ovarian carcinomas. Int J Oncol 28(2):551–558PubMedGoogle Scholar
  48. 48.
    Agyeman AS, Jun WJ, Proia DA, Kim CR, Skor MN, Kocherginsky M, Conzen SD (2016) Hsp90 inhibition results in glucocorticoid receptor degradation in association with increased sensitivity to paclitaxel in triple-negative breast cancer. Horm Cancer 7(2):114–126.  https://doi.org/10.1007/s12672-016-0251-8 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Pang D, Kocherginsky M, Krausz T, Kim SY, Conzen SD (2006) Dexamethasone decreases xenograft response to paclitaxel through inhibition of tumor cell apoptosis. Cancer Biol Ther 5(8):933–940.  https://doi.org/10.4161/cbt.5.8.2875 PubMedCrossRefGoogle Scholar
  50. 50.
    Mikosz CA, Brickley DR, Sharkey MS, Moran TW, Conzen SD (2001) Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J Biol Chem 276(20):16649–16654.  https://doi.org/10.1074/jbc.M010842200 PubMedCrossRefGoogle Scholar
  51. 51.
    Wu W, Pew T, Zou M, Pang D, Conzen SD (2005) Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem 280(6):4117–4124.  https://doi.org/10.1074/jbc.M411200200 PubMedCrossRefGoogle Scholar
  52. 52.
    Skor MN, Wonder EL, Kocherginsky M, Goyal A, Hall BA, Cai Y, Conzen SD (2013) Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer. Clin Cancer Res 19(22):6163–6172.  https://doi.org/10.1158/1078-0432.CCR-12-3826 PubMedCrossRefGoogle Scholar
  53. 53.
    Kim MJ, Chae JS, Kim KJ, Hwang SG, Yoon KW, Kim EK, Yun HJ, Cho JH, Kim J, Kim BW, Kim H, Kang SS, Lang F, Cho SG, Choi EJ (2007) Negative regulation of SEK1 signaling by serum- and glucocorticoid-inducible protein kinase 1. EMBO J 26(13):3075–3085.  https://doi.org/10.1038/sj.emboj.7601755 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Chen Z, Lan X, Wu D, Sunkel B, Ye Z, Huang J, Liu Z, Clinton SK, Jin VX, Wang Q (2015) Ligand-dependent genomic function of glucocorticoid receptor in triple-negative breast cancer. Nat Commun 6:8323.  https://doi.org/10.1038/ncomms9323 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Pan D, Kocherginsky M, Conzen SD (2011) Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res 71(20):6360–6370.  https://doi.org/10.1158/0008-5472.CAN-11-0362 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Backman S, Kollara A, Haw R, Stein L, Brown TJ (2014) Glucocorticoid-induced reversal of interleukin-1beta-stimulated inflammatory gene expression in human oviductal cells. PLoS One 9(5):e97997.  https://doi.org/10.1371/journal.pone.0097997 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Neta R (1997) Modulation of radiation damage by cytokines. Stem Cells 15(Suppl 2):87–94PubMedGoogle Scholar
  58. 58.
    Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C et al (2015) Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (Lond) 12(1):14.  https://doi.org/10.1186/s12950-015-0058-3 CrossRefGoogle Scholar
  59. 59.
    Voloshin T, Alishekevitz D, Kaneti L, Miller V, Isakov E, Kaplanov I, Voronov E, Fremder E, Benhar M, Machluf M, Apte RN, Shaked Y (2015) Blocking IL1beta pathway following paclitaxel chemotherapy slightly inhibits primary tumor growth but promotes spontaneous metastasis. Mol Cancer Ther 14(6):1385–1394.  https://doi.org/10.1158/1535-7163.MCT-14-0969 PubMedCrossRefGoogle Scholar
  60. 60.
    Collart MA, Baeuerle P, Vassalli P (1990) Regulation of tumor necrosis factor alpha transcription in macrophages: involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Mol Cell Biol 10(4):1498–1506.  https://doi.org/10.1128/MCB.10.4.1498 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Shakhov AN, Collart MA, Vassalli P, Nedospasov SA, Jongeneel CV (1990) Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages. J Exp Med 171(1):35–47.  https://doi.org/10.1084/jem.171.1.35 PubMedCrossRefGoogle Scholar
  62. 62.
    Hallahan DE, Virudachalam S, Kuchibhotla J, Kufe DW, Weichselbaum RR (1994) Membrane-derived second messenger regulates x-ray-mediated tumor necrosis factor alpha gene induction. Proc Natl Acad Sci U S A 91(11):4897–4901.  https://doi.org/10.1073/pnas.91.11.4897 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J, Hemmi S, Hengartner H, Zinkernagel RM (2001) Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411(6841):1058–1064.  https://doi.org/10.1038/35082583 PubMedCrossRefGoogle Scholar
  64. 64.
    Haid M (1981) Steroid antiemesis may be harmful. N Engl J Med 304:1237PubMedGoogle Scholar
  65. 65.
    Jusko WJ (1995) Pharmacokinetics and receptor-mediated pharmacodynamics of corticosteroids. Toxicology 102(1-2):189–196.  https://doi.org/10.1016/0300-483X(95)03047-J PubMedCrossRefGoogle Scholar
  66. 66.
    Meier CA (1996) Mechanisms of immunosuppression by glucocorticoids. Eur J Endocrinol 134(1):50.  https://doi.org/10.1530/eje.0.1340050 PubMedCrossRefGoogle Scholar
  67. 67.
    Chen YX, Wang Y, CC F, Diao F, Song LN, Li ZB et al (2010) Dexamethasone enhances cell resistance to chemotherapy by increasing adhesion to extracellular matrix in human ovarian cancer cells. Endocr Relat Cancer 17(1):39–50.  https://doi.org/10.1677/ERC-08-0296 PubMedCrossRefGoogle Scholar
  68. 68.
    Liotta LA, Kohn EC (2001) The microenvironment of the tumour–host interface. Nature 411(6835):375–379.  https://doi.org/10.1038/35077241 PubMedCrossRefGoogle Scholar
  69. 69.
    Moran TJ, Gray S, Mikosz CA, Conzen SD (2000) The glucocorticoid receptor mediates a survival signal in human mammary epithelial cells. Cancer Res 60(4):867–872PubMedGoogle Scholar
  70. 70.
    Herr I, Pfitzenmaier J (2006) Glucocorticoid use in prostate cancer and other solid tumours: implications for effectiveness of cytotoxic treatment and metastases. Lancet Oncol 7(5):425–430.  https://doi.org/10.1016/S1470-2045(06)70694-5 PubMedCrossRefGoogle Scholar
  71. 71.
    Hidalgo AA, Montecinos VP, Paredes R, Godoy AS, McNerney EM, Tovar H, Pantoja D, Johnson C, Trump D, Onate SA (2011) Biochemical characterization of nuclear receptors for vitamin D3 and glucocorticoids in prostate stroma cell microenvironment. Biochem Biophys Res Commun 412(1):13–19.  https://doi.org/10.1016/j.bbrc.2011.06.181 PubMedCrossRefGoogle Scholar
  72. 72.
    Volden PA, Conzen SD (2013) The influence of glucocorticoid signaling on tumor progression. Brain Behav Immun 30(Suppl):S26–S31.  https://doi.org/10.1016/j.bbi.2012.10.022 PubMedCrossRefGoogle Scholar
  73. 73.
    Sundahl N, Clarisse D, Bracke M, Offner F, Berghe WV, Beck IM (2016) Selective glucocorticoid receptor-activating adjuvant therapy in cancer treatments. Oncoscience 3(7-8):188–202.  https://doi.org/10.18632/oncoscience.315 PubMedPubMedCentralGoogle Scholar
  74. 74.
    Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22.  https://doi.org/10.1038/nrc2748 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kobayashi M, Sawada K, Kimura T. (2017) Potential of integrin inhibitors for treating ovarian cancer: a literature review. Cancers (Basel) 9Google Scholar
  76. 76.
    Mierke CT, Frey B, Fellner M, Herrmann M, Fabry B (2011) Integrin alpha5beta1 facilitates cancer cell invasion through enhanced contractile forces. J Cell Sci 124(3):369–383.  https://doi.org/10.1242/jcs.071985 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lou X, Han X, Jin C, Tian W, Yu W, Ding D, Cheng L, Huang B, Jiang H, Lin B (2013) SOX2 targets fibronectin 1 to promote cell migration and invasion in ovarian cancer: new molecular leads for therapeutic intervention. OMICS 17(10):510–518.  https://doi.org/10.1089/omi.2013.0058 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Knowles LM, Gurski LA, Engel C, Gnarra JR, Maranchie JK, Pilch J (2013) Integrin alphavbeta3 and fibronectin upregulate slug in cancer cells to promote clot invasion and metastasis. Cancer Res 73(20):6175–6184.  https://doi.org/10.1158/0008-5472.CAN-13-0602 PubMedCrossRefGoogle Scholar
  79. 79.
    Paszek MJ, DuFort CC, Rossier O, Bainer R, Mouw JK, Godula K, Hudak JE, Lakins JN, Wijekoon AC, Cassereau L, Rubashkin MG, Magbanua MJ, Thorn KS, Davidson MW, Rugo HS, Park JW, Hammer DA, Giannone G, Bertozzi CR, Weaver VM (2014) The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511(7509):319–325.  https://doi.org/10.1038/nature13535 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kanatani Y, Kasukabe T, Okabe-Kado J, Hayashi S, Yamamoto-Yamaguchi Y, Motoyoshi K, Nagata N, Honma Y (1996) Transforming growth factor beta and dexamethasone cooperatively enhance c-jun gene expression and inhibit the growth of human monocytoid leukemia cells. Cell Growth Differ 7(2):187–196PubMedGoogle Scholar
  81. 81.
    Takuma A, Kaneda T, Sato T, Ninomiya S, Kumegawa M, Hakeda Y (2003) Dexamethasone enhances osteoclast formation synergistically with transforming growth factor-beta by stimulating the priming of osteoclast progenitors for differentiation into osteoclasts. J Biol Chem 278(45):44667–44674.  https://doi.org/10.1074/jbc.M300213200 PubMedCrossRefGoogle Scholar
  82. 82.
    Ranganathan P, Agrawal A, Bhushan R, Chavalmane AK, Kalathur RK, Takahashi T et al (2007) Expression profiling of genes regulated by TGF-beta: differential regulation in normal and tumour cells. BMC Genomics 8(1):98.  https://doi.org/10.1186/1471-2164-8-98 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Salem S, Harris T, Mok JS, Li MY, Keenan CR, Schuliga MJ et al (2012) Transforming growth factor-beta impairs glucocorticoid activity in the A549 lung adenocarcinoma cell line. Br J Pharmacol 166(7):2036–2048.  https://doi.org/10.1111/j.1476-5381.2012.01885.x PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Li Z, Chen Y, Cao D, Wang Y, Chen G, Zhang S, Lu J (2006) Glucocorticoid up-regulates transforming growth factor-beta (TGF-beta) type II receptor and enhances TGF-beta signaling in human prostate cancer PC-3 cells. Endocrinology 147(11):5259–5267.  https://doi.org/10.1210/en.2006-0540 PubMedCrossRefGoogle Scholar
  85. 85.
    Cheng J, Truong LD, Wu X, Kuhl D, Lang F, Du J (2010) Serum- and glucocorticoid-regulated kinase 1 is upregulated following unilateral ureteral obstruction causing epithelial-mesenchymal transition. Kidney Int 78(7):668–678.  https://doi.org/10.1038/ki.2010.214 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zhang L, Lei W, Wang X, Tang Y, Song J (2010) Glucocorticoid induces mesenchymal-to-epithelial transition and inhibits TGF-beta1-induced epithelial-to-mesenchymal transition and cell migration. FEBS Lett 584(22):4646–4654.  https://doi.org/10.1016/j.febslet.2010.10.038 PubMedCrossRefGoogle Scholar
  87. 87.
    Yang HW, Lee SA, Shin JM, Park IH, Lee HM (2017) Glucocorticoids ameliorate TGF-beta1-mediated epithelial-to-mesenchymal transition of airway epithelium through MAPK and snail/slug signaling pathways. Sci Rep 7(1):3486.  https://doi.org/10.1038/s41598-017-02358-z PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Godoy P, Lakkapamu S, Schug M, Bauer A, Stewart JD, Bedawi E, Hammad S, Amin J, Marchan R, Schormann W, Maccoux L, von Recklinghausen I, Reif R, Hengstler JG (2010) Dexamethasone-dependent versus -independent markers of epithelial to mesenchymal transition in primary hepatocytes. Biol Chem 391(1):73–83.  https://doi.org/10.1515/BC.2010.010 PubMedCrossRefGoogle Scholar
  89. 89.
    Lin KT, Yeh YM, Chuang CM, Yang SY, Chang JW, Sun SP, Wang YS, Chao KC, Wang LH (2015) Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis through targeting Rap1B. Nat Commun 6:5917.  https://doi.org/10.1038/ncomms6917 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Bos JL, de Rooij J, Reedquist KA (2001) Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol 2(5):369–377.  https://doi.org/10.1038/35073073 PubMedCrossRefGoogle Scholar
  91. 91.
    Lin KT, Sun SP, JI W, Wang LH (2017) Low-dose glucocorticoids suppresses ovarian tumor growth and metastasis in an immunocompetent syngeneic mouse model. PLoS One 12(6):e0178937.  https://doi.org/10.1371/journal.pone.0178937 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    King MC, Marks JH, Mandell JB, New York Breast Cancer Study G (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643–646CrossRefGoogle Scholar
  93. 93.
    Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72(5):1117–1130.  https://doi.org/10.1086/375033 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, Evans DG, Izatt L, Eeles RA, Adlard J, Davidson R, Eccles D, Cole T, Cook J, Brewer C, Tischkowitz M, Douglas F, Hodgson S, Walker L, Porteous ME, Morrison PJ, Side LE, Kennedy MJ, Houghton C, Donaldson A, Rogers MT, Dorkins H, Miedzybrodzka Z, Gregory H, Eason J, Barwell J, McCann E, Murray A, Antoniou AC, Easton DF, EMBRACE (2013) Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 105(11):812–822.  https://doi.org/10.1093/jnci/djt095 PubMedCrossRefGoogle Scholar
  95. 95.
    Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25(11):1329–1333.  https://doi.org/10.1200/JCO.2006.09.1066 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kurman RJ, Shih Ie M (2010) The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol 34(3):433–443.  https://doi.org/10.1097/PAS.0b013e3181cf3d79 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Crum CP, Drapkin R, Miron A, Ince TA, Muto M, Kindelberger DW, Lee Y (2007) The distal fallopian tube: a new model for pelvic serous carcinogenesis. Curr Opin Obstet Gynecol 19(1):3–9.  https://doi.org/10.1097/GCO.0b013e328011a21f PubMedCrossRefGoogle Scholar
  98. 98.
    Tone AA, Salvador S, Finlayson SJ, Tinker AV, Kwon JS, Lee CH, Cohen T, Ehlen T, Lee M, Carey MS, Heywood M, Pike J, Hoskins PJ, Stuart GC, Swenerton KD, Huntsman DG, Gilks CB, Miller DM, McAlpine JN (2012) The role of the fallopian tube in ovarian cancer. Clin Adv Hematol Oncol 10(5):296–306PubMedGoogle Scholar
  99. 99.
    Tone AA, Virtanen C, Shaw P, Brown TJ (2012) Prolonged postovulatory proinflammatory signaling in the fallopian tube epithelium may be mediated through a BRCA1/DAB2 axis. Clin Cancer Res 18(16):4334–4344.  https://doi.org/10.1158/1078-0432.CCR-12-0199 PubMedCrossRefGoogle Scholar
  100. 100.
    Fang YY, Li D, Cao C, Li CY, Li TT (2014) Glucocorticoid receptor repression mediated by BRCA1 inactivation in ovarian cancer. BMC Cancer 14(1):188.  https://doi.org/10.1186/1471-2407-14-188 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Vilasco M, Communal L, Hugon-Rodin J, Penault-Llorca F, Mourra N, Wu Z et al (2013) Loss of glucocorticoid receptor activation is a hallmark of BRCA1-mutated breast tissue. Breast Cancer Res Treat 142(2):283–296.  https://doi.org/10.1007/s10549-013-2722-8 PubMedCrossRefGoogle Scholar
  102. 102.
    Ritter HD, Antonova L, Mueller CR (2012) The unliganded glucocorticoid receptor positively regulates the tumor suppressor gene BRCA1 through GABP beta. Mol Cancer Res 10(4):558–569.  https://doi.org/10.1158/1541-7786.MCR-11-0423-T PubMedCrossRefGoogle Scholar
  103. 103.
    Antonova L, Aronson K, Mueller CR (2011) Stress and breast cancer: from epidemiology to molecular biology. Breast Cancer Res 13(2):208.  https://doi.org/10.1186/bcr2836 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Quinn JE, Carser JE, James CR, Kennedy RD, Harkin DP (2009) BRCA1 and implications for response to chemotherapy in ovarian cancer. Gynecol Oncol 113(1):134–142.  https://doi.org/10.1016/j.ygyno.2008.12.015 PubMedCrossRefGoogle Scholar
  105. 105.
    Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP (2004) The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 96(22):1659–1668.  https://doi.org/10.1093/jnci/djh312 PubMedCrossRefGoogle Scholar
  106. 106.
    Markman M, Kennedy A, Webster K, Kulp B, Peterson G, Belinson J (2000) Paclitaxel-associated hypersensitivity reactions: experience of the gynecologic oncology program of the Cleveland Clinic Cancer Center. J Clin Oncol 18(1):102–105.  https://doi.org/10.1200/JCO.2000.18.1.102 PubMedCrossRefGoogle Scholar
  107. 107.
    Nakagawa M, Terashima T, D'Yachkova Y, Bondy GP, Hogg JC, van Eeden SF (1998) Glucocorticoid-induced granulocytosis: contribution of marrow release and demargination of intravascular granulocytes. Circulation 98(21):2307–2313.  https://doi.org/10.1161/01.CIR.98.21.2307 PubMedCrossRefGoogle Scholar
  108. 108.
    Liles WC, Dale DC, Klebanoff SJ (1995) Glucocorticoids inhibit apoptosis of human neutrophils. Blood 86(8):3181–3188PubMedGoogle Scholar
  109. 109.
    Fauci JM, Whitworth JM, Schneider KE, Subramaniam A, Zhang B, Frederick PJ, Kilgore LC, Straughn JM Jr (2011) Prognostic significance of the relative dose intensity of chemotherapy in primary treatment of epithelial ovarian cancer. Gynecol Oncol 122(3):532–535.  https://doi.org/10.1016/j.ygyno.2011.05.023 PubMedCrossRefGoogle Scholar
  110. 110.
    Hanna RK, Poniewierski MS, Laskey RA, Lopez MA, Shafer A, Van Le L, Crawford J, Dale DC, Gehrig PA, Secord AA, Havrilesky LJ, Lyman GH (2013) Predictors of reduced relative dose intensity and its relationship to mortality in women receiving multi-agent chemotherapy for epithelial ovarian cancer. Gynecol Oncol 129(1):74–80.  https://doi.org/10.1016/j.ygyno.2012.12.017 PubMedCrossRefGoogle Scholar
  111. 111.
    Veneris JT, Darcy KM, Mhawech-Fauceglia P, Tian C, Lengyel E, Lastra RR, Pejovic T, Conzen SD, Fleming GF (2017) High glucocorticoid receptor expression predicts short progression-free survival in ovarian cancer. Gynecol Oncol 146(1):153–160.  https://doi.org/10.1016/j.ygyno.2017.04.012 PubMedCrossRefGoogle Scholar
  112. 112.
    Woenckhaus J, Franke FE, Hackethal A, Von Georgi R, Munstedt K (2006) Glucocorticosteroid receptors in ovarian carcinomas. Oncol Rep 15(5):1137–1140PubMedGoogle Scholar
  113. 113.
    Rocereto TF, Saul HM, Aikins JA Jr, Paulson J (2000) Phase II study of mifepristone (RU486) in refractory ovarian cancer. Gynecol Oncol 77(3):429–432.  https://doi.org/10.1006/gyno.2000.5789 PubMedCrossRefGoogle Scholar
  114. 114.
    Voisin M, de Medina P, Mallinger A, Dalenc F, Huc-Claustre E, Leignadier J, Serhan N, Soules R, Ségala G, Mougel A, Noguer E, Mhamdi L, Bacquié E, Iuliano L, Zerbinati C, Lacroix-Triki M, Chaltiel L, Filleron T, Cavaillès V, Al Saati T, Rochaix P, Duprez-Paumier R, Franchet C, Ligat L, Lopez F, Record M, Poirot M, Silvente-Poirot S (2017) Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proc Natl Acad Sci U S A 114(44):E9346–E9E55.  https://doi.org/10.1073/pnas.1707965114 PubMedCrossRefGoogle Scholar
  115. 115.
    Schacke H, Berger M, Rehwinkel H, Asadullah K (2007) Selective glucocorticoid receptor agonists (SEGRAs): novel ligands with an improved therapeutic index. Mol Cell Endocrinol 275(1-2):109–117.  https://doi.org/10.1016/j.mce.2007.05.014 PubMedCrossRefGoogle Scholar
  116. 116.
    Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM (2015) Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol Ther 152:28–41.  https://doi.org/10.1016/j.pharmthera.2015.05.001 PubMedCrossRefGoogle Scholar
  117. 117.
    Aapro M, Fabi A, Nole F, Medici M, Steger G, Bachmann C, Roncoroni S, Roila F (2010) Double-blind, randomised, controlled study of the efficacy and tolerability of palonosetron plus dexamethasone for 1 day with or without dexamethasone on days 2 and 3 in the prevention of nausea and vomiting induced by moderately emetogenic chemotherapy. Ann Oncol 21(5):1083–1088.  https://doi.org/10.1093/annonc/mdp584 PubMedCrossRefGoogle Scholar
  118. 118.
    Roila F, Ruggeri B, Ballatori E, Del Favero A, Tonato M (2014) Aprepitant versus dexamethasone for preventing chemotherapy-induced delayed emesis in patients with breast cancer: a randomized double-blind study. J Clin Oncol 32(2):101–106.  https://doi.org/10.1200/JCO.2013.51.4547 PubMedCrossRefGoogle Scholar
  119. 119.
    Berger MJ, Vargo C, Vincent M, Shaver K, Phillips G, Layman R, Macrae E, Mrozek E, Ramaswamy B, Wesolowski R, Shapiro CL, Lustberg MB (2015) Stopping paclitaxel premedication after two doses in patients not experiencing a previous infusion hypersensitivity reaction. Support Care Cancer 23(7):2019–2024.  https://doi.org/10.1007/s00520-014-2556-x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lunenfeld-Tanenbaum Research Institute at Sinai Health SystemsUniversity of TorontoTorontoCanada
  2. 2.Division of Gynecological Oncology, Princess Margaret Cancer CentreUniversity of TorontoTorontoCanada
  3. 3.Department of Obstetrics and GynecologyUniversity of TorontoTorontoCanada
  4. 4.Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Lunenfeld-Tanenbaum Research Institute at Mt. Sinai HospitalUniversity of TorontoTorontoUSA

Personalised recommendations