Advertisement

Hormones and Cancer

, Volume 8, Issue 1, pp 28–48 | Cite as

Micro-RNA-204 Participates in TMPRSS2/ERG Regulation and Androgen Receptor Reprogramming in Prostate Cancer

  • Krassimira Todorova
  • Metodi V. Metodiev
  • Gergana Metodieva
  • Milcho Mincheff
  • Nelson Fernández
  • Soren Hayrabedyan
Original Paper

Abstract

Cancer progression is driven by genome instability incurred rearrangements such as transmembrane protease, serine 2 (TMPRSS2)/v-ets erythroblastosis virus E26 oncogene (ERG) that could possibly turn some of the tumor suppressor micro-RNAs into pro-oncogenic ones. Previously, we found dualistic miR-204 effects, acting either as a tumor suppressor or as an oncomiR in ERG fusion-dependent manner. Here, we provided further evidence for an important role of miR-204 for TMPRSS2/ERG and androgen receptor (AR) signaling modulation and fine tuning that prevents TMPRSS2/ERG overexpression in prostate cancer. Based on proximity-based ligation assay, we designed a novel method for detection of TMPRSS2/ERG protein products. We found that miR-204 is TMPRSS2/ERG oncofusion negative regulator, and this was mediated by DNA methylation of TMPRSS2 promoter. Transcriptional factors runt-related transcription factor 2 (RUNX2) and ETS proto-oncogene 1 (ETS1) were positive regulators of TMPRSS2/ERG expression and promoter hypo-methylation. Clustering of patients’ sera for fusion protein, transcript expression, and wild-type ERG transcript isoforms, demonstrated not all patients harboring fusion transcripts had fusion protein products, and only few fusion positive ones exhibited increased wild-type ERG transcripts. miR-204 upregulated AR through direct promoter hypo-methylation, potentiated by the presence of ERG fusion and RUNX2 and ETS1. Proteomics studies provided evidence that miR-204 has dualistic role in AR cancer-related reprogramming, promoting prostate cancer-related androgen-responsive genes and AR target genes, as well as AR co-regulatory molecules. miR-204 methylation regulation was supported by changes in molecules responsible for chromatin remodeling, DNA methylation, and its regulation. In summary, miR-204 is a mild regulator of the AR function during the phase of preserved AR sensitivity as the latter one is required for ERG-fusion translocation.

Keywords

Androgen Receptor LNCaP Cell Androgen Receptor Expression Proximity Ligation Assay Androgen Receptor Signaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was funded by grants from The National Sciences Fund at Bulgarian Ministry of Education and Sciences (DMU 03/27 and DCOST 01/23) provided to Krassimira Todorova, Ph.D., D.Sc. and Soren Hayrabedyan, M.D., Ph.D., D.Sc.

The experimental work described herein was performed in laboratories of Institute of Biology and Immunology of Reproduction and Proteomics Core of Essex University, School of Biological Sciences. Method of detection of TMPRSS2/ERG protein products has patent pending procedure at Bulgarian National Patent Office (2014, K.T., S.H.).

Authors’ Contributions

K.T and S.H. designed the study, TMPRSS2/ERG protein detection method. K.T. did the cell-based experiments, FCS, gene silencing. and molecular biology studies. M.V.M. and G.M. did the LTQ Orbitrap proteomics and proteomics data analysis. S.H. did the bioinformatics analysis. M.M. and N.F. revised and refined the manuscript, providing constructive feedback.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

12672_2016_279_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1872 kb)
12672_2016_279_MOESM2_ESM.pdf (1.2 mb)
ESM 2 (PDF 1234 kb)
12672_2016_279_MOESM3_ESM.pdf (213 kb)
ESM 3 (PDF 213 kb)
12672_2016_279_MOESM4_ESM.pdf (209 kb)
ESM 4 (PDF 209 kb)
12672_2016_279_MOESM5_ESM.pdf (295 kb)
ESM 5 (PDF 295 kb)
12672_2016_279_MOESM6_ESM.pdf (235 kb)
ESM 6 (PDF 234 kb)
12672_2016_279_MOESM7_ESM.pdf (1.6 mb)
ESM 7 (PDF 1639 kb)
12672_2016_279_MOESM8_ESM.pdf (600 kb)
ESM 8 (PDF 599 kb)
12672_2016_279_MOESM9_ESM.pdf (822 kb)
ESM 9 (PDF 822 kb)
12672_2016_279_MOESM10_ESM.pdf (1.3 mb)
ESM 10 (PDF 1304 kb)
12672_2016_279_MOESM11_ESM.pdf (2.1 mb)
ESM 11 (PDF 2167 kb)
12672_2016_279_MOESM12_ESM.docx (22 kb)
ESM 12 (DOCX 22 kb)
12672_2016_279_MOESM13_ESM.docx (15 kb)
ESM 13 (DOCX 15 kb)
12672_2016_279_MOESM14_ESM.docx (17 kb)
ESM 14 (DOCX 16 kb)
12672_2016_279_MOESM15_ESM.docx (22 kb)
ESM 15 (DOCX 21 kb)

References

  1. 1.
    Wright ME, Tsai MJ, Aebersold R (2003) Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol Endocrinol 17:1726–1737. doi: 10.1210/me.2003-0031 CrossRefPubMedGoogle Scholar
  2. 2.
    Waltering KK, Helenius MA, Sahu B et al (2009) Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res 69:8141–8149. doi: 10.1158/0008-5472.CAN-09-0919 CrossRefPubMedGoogle Scholar
  3. 3.
    Hu R, Dunn TA, Wei S et al (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69:16–22. doi: 10.1158/0008-5472.CAN-08-2764 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Demichelis F, Fall K, Perner S et al (2007) TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26:4596–4599. doi: 10.1038/sj.onc.1210630 CrossRefPubMedGoogle Scholar
  5. 5.
    Tomlins S a, Rhodes DR, Perner S et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648. doi: 10.1126/science.1117679 CrossRefPubMedGoogle Scholar
  6. 6.
    Clark J, Merson S, Jhavar S et al (2007) Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene 26:2667–2673. doi: 10.1038/sj.onc.1210070 CrossRefPubMedGoogle Scholar
  7. 7.
    Weier C, Haffner MC, Mosbruger T et al (2013) Nucleotide resolution analysis of TMPRSS2 and ERG rearrangements in prostate cancer. J Pathol 230:174–183. doi: 10.1002/path.4186 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Oberley LW, Oberley TD, Buettner GR (1980) Cell differentiation, aging and cancer: the possible roles of superoxide and superoxide dismutases. Med Hypotheses 6:249–268CrossRefPubMedGoogle Scholar
  9. 9.
    Yu JJ, Yu JJ, Mani R-SS et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG Gene fusions in prostate cancer progression. Cancer Cell 17:443–454. doi: 10.1016/j.ccr.2010.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mani R-S, Iyer MK, Cao Q et al (2011) TMPRSS2-ERG-mediated feed-forward regulation of wild-type ERG in human prostate cancers. Cancer Res 71:5387–5392. doi: 10.1158/0008-5472.CAN-11-0876 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Petrovics G, Liu A, Shaheduzzaman S et al (2005) Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24:3847–3852. doi: 10.1038/sj.onc.1210745 CrossRefPubMedGoogle Scholar
  12. 12.
    Börno ST, Fischer A, Kerick M et al (2012) Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov 2:1024–1035. doi: 10.1158/2159-8290.CD-12-0041 CrossRefPubMedGoogle Scholar
  13. 13.
    Schwartzman J, Mongoue-Tchokote S, Gibbs A et al (2011) A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer. Epigenetics 6:1248–1256. doi: 10.4161/epi.6.10.17727 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Todorova K, Metodiev MV, Metodieva G et al (2016) miR-204 is dysregulated in metastatic prostate cancer in vitro. Mol Carcinog 55:131–147. doi: 10.1002/mc.22263 CrossRefPubMedGoogle Scholar
  15. 15.
    Sun Y, Koo S, White N et al (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32:e188. doi: 10.1093/nar/gnh186 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Todorova K, Mincheff M, Hayrabedyan S et al (2013) Fundamental role of microRNAs in androgen-dependent male reproductive biology and prostate cancerogenesis. Am J Reprod Immunol. doi: 10.1111/j.1600-0897.2012.01139.x PubMedGoogle Scholar
  17. 17.
    Wang L, Tang H, Thayanithy V et al (2009) Gene networks and microRNAs implicated in aggressive prostate cancer. Cancer Res 69:9490–9497. doi: 10.1158/0008-5472.CAN-09-2183 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Turner DP, Findlay VJ, Moussa O et al (2011) Mechanisms and functional consequences of PDEF protein expression loss during prostate cancer progression. Prostate 71:1723–1735. doi: 10.1002/pros.21389 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Smith AM, Findlay VJ, Bandurraga SG et al (2012) ETS1 transcriptional activity is increased in advanced prostate cancer and promotes the castrate-resistant phenotype. Carcinogenesis 33:572–580. doi: 10.1093/carcin/bgs007 CrossRefPubMedGoogle Scholar
  20. 20.
    Li L, Chang W, Yang G et al (2014) Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer. Sci Signal 7:ra47. doi: 10.1126/scisignal.2005070 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Akech J, Wixted JJ, Bedard K et al (2010) Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29:811–821. doi: 10.1038/onc.2009.389 CrossRefPubMedGoogle Scholar
  22. 22.
    Todorova K, Zasheva D, Kanev K, Hayrabedyan S (2014) miR-204 shifts the epithelial to mesenchymal transition in concert with the transcription factors RUNX2 , ETS1 , and cMYB in prostate cancer cell line model. J Cancer Res 2014:1–14. doi: 10.1155/2014/840906 CrossRefGoogle Scholar
  23. 23.
    Baniwal SK, Khalid O, Gabet Y et al (2010) Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol Cancer 9:258. doi: 10.1186/1476-4598-9-258 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Husseiny MI, Kuroda A, Kaye AN et al (2012) Development of a quantitative methylation-specific polymerase chain reaction method for monitoring Beta cell death in type 1 diabetes. PLoS One 7:e47942. doi: 10.1371/journal.pone.0047942 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Metodieva G, Nogueira-de-Souza NC, Greenwood C et al (2013) CD74-dependent deregulation of the tumor suppressor scribble in human epithelial and breast cancer cells. Neoplasia 15:660–668CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.P.B.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. doi: 10.1038/nbt.1511 CrossRefPubMedGoogle Scholar
  27. 27.
    Liu H, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201. doi: 10.1021/ac0498563 CrossRefPubMedGoogle Scholar
  28. 28.
    Yoav Benjamini YH (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  29. 29.
    Gopalan A, Leversha MA, Satagopan JM et al (2009) TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res 69:1400–1406. doi: 10.1158/0008-5472.CAN-08-2467 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hu Y, Dobi A, Sreenath T et al (2008) Delineation of TMPRSS2-ERG splice variants in prostate cancer. Clin Cancer Res 14:4719–4725. doi: 10.1158/1078-0432.CCR-08-0531 CrossRefPubMedGoogle Scholar
  31. 31.
    Chow A, Amemiya Y, Sugar L et al (2012) Whole-transcriptome analysis reveals established and novel associations with TMPRSS2:ERG fusion in prostate cancer. Anticancer Res 32:3629–3642PubMedGoogle Scholar
  32. 32.
    Attard G, Clark J, Ambroisine L et al (2008) Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 27:253–263. doi: 10.1038/sj.onc.1210640 CrossRefPubMedGoogle Scholar
  33. 33.
    Mertz KD, Setlur SR, Dhanasekaran SM et al (2007) Molecular characterization of TMPRSS2-ERG gene fusion in the NCI-H660 prostate cancer cell line: a new perspective for an old model. Neoplasia 9:200–206. doi: 10.1593/neo.07103 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Furusato B, Gao C-L, Ravindranath L et al (2008) Mapping of TMPRSS2-ERG fusions in the context of multi-focal prostate cancer. Mod Pathol 21:67–75. doi: 10.1038/modpathol.3800981 CrossRefPubMedGoogle Scholar
  35. 35.
    Markert EK, Mizuno H, Vazquez A, Levine AJ (2011) Molecular classification of prostate cancer using curated expression signatures. Proc Natl Acad Sci U S A 108:21276–21281. doi: 10.1073/pnas.1117029108 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nguyen P-N, Violette P, Chan S et al (2011) A panel of TMPRSS2:ERG fusion transcript markers for urine-based prostate cancer detection with high specificity and sensitivity. Eur Urol 59:407–414. doi: 10.1016/j.eururo.2010.11.026 CrossRefPubMedGoogle Scholar
  37. 37.
    Yu J, Yu J, Rhodes DR et al (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663. doi: 10.1158/0008-5472.CAN-07-2498 CrossRefPubMedGoogle Scholar
  38. 38.
    Mounir Z, Korn JM, Westerling T et al (2016) ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the androgen receptor. Elife 5:1–19. doi: 10.7554/eLife.13964 CrossRefGoogle Scholar
  39. 39.
    Viré E, Brenner C, Deplus R et al (2006) The polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874. doi: 10.1038/nature04431 CrossRefPubMedGoogle Scholar
  40. 40.
    Tatematsu KI, Yamazaki T, Ishikawa F (2000) MBD2-MBD3 complex binds to hemi-methylated DNA and forms a complex containing DNMT1 at the replication foci in late S phase. Genes Cells 5:677–688. doi: 10.1046/j.1365-2443.2000.00359.x CrossRefPubMedGoogle Scholar
  41. 41.
    Borowczyk E, Mohan KN, D’Aiuto L et al (2009) Identification of a region of the DNMT1 methyltransferase that regulates the maintenance of genomic imprints. Proc Natl Acad Sci U S A 106:20806–20811. doi: 10.1073/pnas.0905668106 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mounir Z, Korn JM, Westerling T et al (2016) ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the androgen receptor. Elife. doi: 10.7554/eLife.13964 PubMedPubMedCentralGoogle Scholar
  43. 43.
    Farooqi AA, Hou M-F, Chen C-C et al (2014) Androgen receptor and gene network: micromechanics reassemble the signaling machinery of TMPRSS2-ERG positive prostate cancer cells. Cancer Cell Int 14:34. doi: 10.1186/1475-2867-14-34 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wu D, Zhang C, Shen Y et al (2011) Androgen receptor-driven chromatin looping in prostate cancer. Trends Endocrinol Metab 22:474–480. doi: 10.1016/j.tem.2011.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang Y, Ng HH, Erdjument-Bromage H et al (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13:1924–1935CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Saito M, Ishikawa F (2002) The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2. J Biol Chem 277:35434–35439. doi: 10.1074/jbc.M203455200 CrossRefPubMedGoogle Scholar
  47. 47.
    Welsbie DS, Xu J, Chen Y et al (2009) Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res 69:958–966. doi: 10.1158/0008-5472.CAN-08-2216 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Valdez CD, Kunju L, Daignault S et al (2013) The E2F1/DNMT1 axis is associated with the development of AR negative castration resistant prostate cancer. Prostate 73:1776–1785. doi: 10.1002/pros.22715 CrossRefPubMedGoogle Scholar
  49. 49.
    Valdez CD, Davis JN, Odeh HM et al (2011) Repression of androgen receptor transcription through the E2F1/DNMT1 axis. PLoS One 6:e25187. doi: 10.1371/journal.pone.0025187 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Heebøll S, Borre M, Ottosen PD et al (2008) SMARCC1 expression is upregulated in prostate cancer and positively correlated with tumour recurrence and dedifferentiation. Histol Histopathol 23:1069–1076PubMedGoogle Scholar
  51. 51.
    Shaikhibrahim Z, Langer B, Lindstrot A et al (2011) Ets-1 is implicated in the regulation of androgen co-regulator FHL2 and reveals specificity for migration, but not invasion, of PC3 prostate cancer cells. Oncol Rep 25:1125–1129. doi: 10.3892/or.2011.1156 PubMedGoogle Scholar
  52. 52.
    Little GH, Baniwal SK, Adisetiyo H et al (2014) Differential effects of RUNX2 on the androgen receptor in prostate cancer: synergistic stimulation of a gene set exemplified by SNAI2 and subsequent invasiveness. Cancer Res 74:2857–2868. doi: 10.1158/0008-5472.CAN-13-2003 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mills IG (2014) Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nat Rev Cancer 14:187–198. doi: 10.1038/nrc3678 CrossRefPubMedGoogle Scholar
  54. 54.
    Narayanan R, Jiang J, Gusev Y et al (2010) MicroRNAs are mediators of androgen action in prostate and muscle. PLoS One 5:e13637. doi: 10.1371/journal.pone.0013637 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Laxman B, Tomlins SA, Mehra R et al (2006) Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia 8:885–888. doi: 10.1593/neo.06625 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Laxman B, Morris DS, Yu J et al (2008) A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res 68:645–649. doi: 10.1158/0008-5472.CAN-07-3224 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Fine SW, Gopalan A, Leversha MA et al (2010) TMPRSS2-ERG gene fusion is associated with low Gleason scores and not with high-grade morphological features. Mod Pathol 23:1325–1333. doi: 10.1038/modpathol.2010.120 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hägglöf C, Hammarsten P, Strömvall K et al (2014) TMPRSS2-ERG expression predicts prostate cancer survival and associates with stromal biomarkers. PLoS One 9:e86824. doi: 10.1371/journal.pone.0086824 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Laboratory of Reproductive OMICs TechnologiesBulgarian Academy of SciencesSofiaBulgaria
  2. 2.School of Biological SciencesUniversity of EssexColchesterUK
  3. 3.Cellular and Gene Therapy WardNational Specialized Hematology HospitalSofiaBulgaria

Personalised recommendations