Hormones and Cancer

, Volume 7, Issue 2, pp 137–147 | Cite as

Anti-Tumoral Effects of Anti-Progestins in a Patient-Derived Breast Cancer Xenograft Model

  • Nathalie Esber
  • Clément Cherbonnier
  • Michèle Resche-Rigon
  • Abdallah Hamze
  • Mouad Alami
  • Jérôme Fagart
  • Hugues Loosfelt
  • Marc Lombès
  • Nathalie Chabbert-BuffetEmail author
Original Paper


Breast cancer is a hormone-dependent disease in which estrogen signaling targeting drugs fail in about 10 % due to resistance. Strong evidences highlighted the mitogen role of progesterone, its ligands, and the corresponding progesterone receptor (PR) isoforms in mammary carcinoma. Several PR antagonists have been synthesized; however, some of them are non-selective and led to side or toxic effects. Herein, we evaluated the anti-tumor activity of a commercially available PR modulator, ulipristal acetate (UPA), and a new selective and passive PR antagonist “APR19” in a novel preclinical approach based on patient-derived breast tumor (HBCx-34) xenografted in nude mice. As opposed to P4 that slightly reduces tumor volume, UPA and APR19 treatment for 42 days led to a significant 30 % reduction in tumor weight, accompanied by a significant 40 % retardation in tumor growth upon UPA exposure while a 1.5-fold increase in necrotic areas was observed in APR19-treated tumors. Interestingly, PR expression was upregulated by a 2.5-fold factor in UPA-treated tumors while APR19 significantly reduced expression of both PR and estrogen receptor α, indicating a potential distinct molecular mechanism among PR antagonists. Cell proliferation was clearly reduced in UPA group compared to vehicle conditions, as revealed by the significant reduction in Ki-67, Cyclin D1, and proliferating cell nuclear antigen (PCNA) expression. Likewise, an increase in activated, cleaved poly(ADP-ribose) polymerase (PARP) expression was also demonstrated upon UPA exposure. Collectively, our findings provide direct in vivo evidence for anti-progestin-mediated control of human breast cancer growth, given their anti-proliferative and pro-apoptotic activities, supporting a potential role in breast cancer therapy.


Progesterone Receptor Proliferate Cell Nuclear Antigen Progesterone Receptor Expression Proliferate Cell Nuclear Antigen Expression Ulipristal Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Progesterone receptor


Ulipristal acetate

PR antagonists




This study was supported by fundings from Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paris Sud, and a grant from La Ligue Nationale Contre le Cancer (to FJ and ML). The authors would like to thank Pr Jean-Daniel Brion, Dr Marie-Edith Rafestin-Oblin, and Dr Junaid Ali Khan for their help and comments during the initial phase of this work.

The funder HRA Pharma provided grant together with the national agency for Research (ANRT/HRA pharma CIFRE, i.e., Conventions Industrielles de Formation par la Recherche, in English Research Training Industrial Grant Contract) for [NE], support in the form of salary for one author [MRR], but did not have any additional role in the study design, data collection and analysis, or preparation of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

MRR is an employee of HRA Pharma.

NE is a recipient of a joint ANRT/HRA Pharma grant.

NCB is a member of the European board of Gedeon Richter, without personal income.

Supplementary material

12672_2016_255_MOESM1_ESM.pdf (258 kb)
ESM 1 (PDF 257 kb)
12672_2016_255_MOESM2_ESM.docx (51 kb)
ESM 2 (DOCX 50 kb)


  1. 1.
    Aparicio S, Hidalgo M, Kung AL (2015) Examining the utility of patient-derived xenograft mouse models. Nature Reviews Cancer 15(5):311–316. doi: 10.1038/nrc3944 CrossRefPubMedGoogle Scholar
  2. 2.
    Bakker GH, Setyono-Han B, Henkelman MS, de Jong FH, Lamberts SW, van der Schoot P, Klijn JG (1987) Comparison of the actions of the antiprogestin mifepristone (RU486), the progestin megestrol acetate, the LHRH analog buserelin, and ovariectomy in treatment of rat mammary tumors. Cancer Treatment Reports 71(11):1021–1027PubMedGoogle Scholar
  3. 3.
    Bissery MC, Chabot GG (1991) History and new development of screening and evaluation methods of anticancer drugs used in vivo and in vitro. Bull Cancer 78(7):587–602PubMedGoogle Scholar
  4. 4.
    Brewster AM, Hortobagyi GN, Broglio KR, Kau SW, Santa-Maria CA, Arun B, Buzdar AU et al (2008) Residual risk of breast cancer recurrence 5 years after adjuvant therapy. J Natl Cancer Inst 100(16):1179–1183. doi: 10.1093/jnci/djn233 CrossRefPubMedGoogle Scholar
  5. 5.
    Brisken C (2013) Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nature Reviews Cancer 13(6):385–396. doi: 10.1038/nrc3518 CrossRefPubMedGoogle Scholar
  6. 6.
    Chabbert-Buffet N, Meduri G, Bouchard P, Spitz IM (2005) Selective progesterone receptor modulators and progesterone antagonists: mechanisms of action and clinical applications. Hum Reprod Update 11(3):293–307CrossRefPubMedGoogle Scholar
  7. 7.
    Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, Skaar TC et al (2003) Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22(47):7316–7339. doi: 10.1038/sj.onc.1206937 CrossRefPubMedGoogle Scholar
  8. 8.
    Cottu P, Bieche I, Assayag F, El Botty R, Chateau-Joubert S, Thuleau A, Bagarre T et al (2014) Acquired resistance to endocrine treatments is associated with tumor-specific molecular changes in patient-derived luminal breast cancer xenografts. Clin Cancer Res 20(16):4314–4325. doi: 10.1158/1078-0432.ccr-13-3230 CrossRefPubMedGoogle Scholar
  9. 9.
    Cottu P, Marangoni E, Assayag F, de Cremoux P, Vincent-Salomon A, Guyader C, de Plater L et al (2012) Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res Treat 133(2):595–606. doi: 10.1007/s10549-011-1815-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Cui X, Schiff R, Arpino G, Osborne CK, Lee AV (2005) Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol 23(30):7721–7735CrossRefPubMedGoogle Scholar
  11. 11.
    Donnez J, Tomaszewski J, Vazquez F, Bouchard P, Lemieszczuk B, Baro F, Nouri K et al (2012) Ulipristal acetate versus leuprolide acetate for uterine fibroids. N Engl J Med 366(5):421–432. doi: 10.1056/NEJMoa1103180 CrossRefPubMedGoogle Scholar
  12. 12.
    El Etreby MF, Liang Y, Wrenn RW, Schoenlein PV (1998) Additive effect of mifepristone and tamoxifen on apoptotic pathways in MCF-7 human breast cancer cells. Breast Cancer Res Treat 51(2):149–168CrossRefPubMedGoogle Scholar
  13. 13.
    Engman M, Skoog L, Soderqvist G, Gemzell-Danielsson K (2008) The effect of mifepristone on breast cell proliferation in premenopausal women evaluated through fine needle aspiration cytology. Hum Reprod 23(9):2072–2079. doi: 10.1093/humrep/den228 CrossRefPubMedGoogle Scholar
  14. 14.
    Esber N, Le Billan F, Resche-Rigon M, Loosfelt H, Lombes M, Chabbert-Buffet N (2015) Ulipristal acetate inhibits progesterone receptor isoform A-mediated human breast cancer proliferation and BCl2-L1 expression. PLoS One 10(10):e0140795. doi: 10.1371/journal.pone.0140795 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Giulianelli S, Molinolo A, Lanari C (2013) Targeting progesterone receptors in breast cancer. Vitam Horm 93:161–184. doi: 10.1016/b978-0-12-416673-8.00009-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Glasier AF, Cameron ST, Fine PM, Logan SJ, Casale W, Van Horn J, Sogor L et al (2010) Ulipristal acetate versus levonorgestrel for emergency contraception: a randomised non-inferiority trial and meta-analysis. Lancet 375(9714):555–562. doi: 10.1016/s0140-6736(10)60101-8 CrossRefPubMedGoogle Scholar
  17. 17.
    Hagan CR, Lange CA (2014) Molecular determinants of context-dependent progesterone receptor action in breast cancer. BMC Medicine 12:32. doi: 10.1186/1741-7015-12-32 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Han SJ, Tsai SY, Tsai MJ, O’Malley BW (2007) Distinct temporal and spatial activities of RU486 on progesterone receptor function in reproductive organs of ovariectomized mice. Endocrinology 148(5):2471–2486CrossRefPubMedGoogle Scholar
  19. 19.
    Hopp TA, Weiss HL, Hilsenbeck SG, Cui Y, Allred DC, Horwitz KB, Fuqua SA (2004) Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res 10(8):2751–2760CrossRefPubMedGoogle Scholar
  20. 20.
    Horak P, Mara M, Dundr P, Kubinova K, Kuzel D, Hudecek R, Chmel R (2012) Effect of a selective progesterone receptor modulator on induction of apoptosis in uterine fibroids in vivo. Int J Endocrinol 2012:436174. doi: 10.1155/2012/436174 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Huniadi CA, Pop OL, Antal TA, Stamatian F (2013) The effects of ulipristal on Bax/Bcl-2, cytochrome c, Ki-67 and cyclooxygenase-2 expression in a rat model with surgically induced endometriosis. Eur J Obstet Gynecol Reprod Biol 169(2):360–365. doi: 10.1016/j.ejogrb.2013.03.022 CrossRefPubMedGoogle Scholar
  22. 22.
    Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24(14):2137–2150. doi: 10.1200/jco.2005.05.2308 CrossRefPubMedGoogle Scholar
  23. 23.
    Kariagina A, Aupperlee MD, Haslam SZ (2008) Progesterone receptor isoform functions in normal breast development and breast cancer. Crit Rev Eukaryot Gene Expr 18(1):11–33CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Khan JA, Bellance C, Guiochon-Mantel A, Lombes M, Loosfelt H (2012) Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line. PLoS One 7(9):e45993. doi: 10.1371/journal.pone.0045993 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Khan JA, Tikad A, Fay M, Hamze A, Fagart J, Chabbert-Buffet N, Meduri G et al (2013) A new strategy for selective targeting of progesterone receptor with passive antagonists. Mol Endocrinol 27(6):909–924. doi: 10.1210/me.2012-1328 CrossRefPubMedGoogle Scholar
  26. 26.
    Klijn JG, Setyono Han B, Foekens JA (2000) Progesterone antagonists and progesterone receptor modulators in the treatment of breast cancer. Steroids 65(10–11):825–830CrossRefPubMedGoogle Scholar
  27. 27.
    Knutson TP, Lange CA (2014) Tracking progesterone receptor-mediated actions in breast cancer. Pharmacol Ther 142(1):114–125. doi: 10.1016/j.pharmthera.2013.11.010 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lanari C, Wargon V, Rojas P, Molinolo AA (2012) Antiprogestins in breast cancer treatment: are we ready? Endocrine-Related Cancer 19(3):R35–50. doi: 10.1530/erc-11-0378 CrossRefPubMedGoogle Scholar
  29. 29.
    Leonhardt SA, Edwards DP (2002) Mechanism of action of progesterone antagonists. Exp Biol Med (Maywood) 227(11):969–980Google Scholar
  30. 30.
    Liang Y, Benakanakere I, Besch-Williford C, Hyder RS, Ellersieck MR, Hyder SM (2010) Synthetic progestins induce growth and metastasis of BT-474 human breast cancer xenografts in nude mice. Menopause 17(5):1040–1047. doi: 10.1097/gme.0b013e3181d3dd0c CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Liang Y, Besch-Williford C, Brekken RA, Hyder SM (2007) Progestin-dependent progression of human breast tumor xenografts: a novel model for evaluating antitumor therapeutics. Cancer Res 67(20):9929–9936. doi: 10.1158/0008-5472.CAN-07-1103 CrossRefPubMedGoogle Scholar
  32. 32.
    Liang Y, Hou M, Kallab AM, Barrett JT, El Etreby F, Schoenlein PV (2003) Induction of antiproliferation and apoptosis in estrogen receptor negative MDA-231 human breast cancer cells by mifepristone and 4-hydroxytamoxifen combination therapy: a role for TGFbeta1. Int J Oncol 23(2):369–380PubMedGoogle Scholar
  33. 33.
    Luo X, Yin P, Js Coon V, Cheng YH, Wiehle RD, Bulun SE (2010) The selective progesterone receptor modulator CDB4124 inhibits proliferation and induces apoptosis in uterine leiomyoma cells. Fertil Steril 93(8):2668–2673CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Madauss KP, Grygielko ET, Deng SJ, Sulpizio AC, Stanley TB, Wu C, Short SA et al (2007) A structural and in vitro characterization of asoprisnil: a selective progesterone receptor modulator. Mol Endocrinol 21(5):1066–1081CrossRefPubMedGoogle Scholar
  35. 35.
    Marangoni E, Poupon MF (2014) Patient-derived tumour xenografts as models for breast cancer drug development. Curr Opin Oncol 26(6):556–561. doi: 10.1097/cco.0000000000000133 CrossRefPubMedGoogle Scholar
  36. 36.
    Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, de Plater L et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13(13):3989–3998CrossRefPubMedGoogle Scholar
  37. 37.
    Martin LA, Dowsett M (2013) BCL-2: a new therapeutic target in estrogen receptor-positive breast cancer? Cancer Cell 24(1):7–9. doi: 10.1016/j.ccr.2013.06.006 CrossRefPubMedGoogle Scholar
  38. 38.
    Michna H, Schneider MR, Nishino Y, el Etreby MF (1989) Antitumor activity of the antiprogestins ZK 98.299 and RU 38.486 in hormone dependent rat and mouse mammary tumors: mechanistic studies. Breast Cancer Res Treat 14(3):275–288CrossRefPubMedGoogle Scholar
  39. 39.
    Mote PA, Bartow S, Tran N, Clarke CL (2002) Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis. Breast Cancer Res Treat 72(2):163–172CrossRefPubMedGoogle Scholar
  40. 40.
    Mote PA, Gompel A, Howe C, Hilton HN, Sestak I, Cuzick J, Dowsett M et al (2015) Progesterone receptor A predominance is a discriminator of benefit from endocrine therapy in the ATAC trial. Breast Cancer Res Treat 151(2):309–318. doi: 10.1007/s10549-015-3397-0 CrossRefPubMedGoogle Scholar
  41. 41.
    Mote PA, Leary JA, Avery KA, Sandelin K, Chenevix-Trench G, Kirk JA, Clarke CL (2004) Germ-line mutations in BRCA1 or BRCA2 in the normal breast are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor A. Genes Chromosom Cancer 39(3):236–248CrossRefPubMedGoogle Scholar
  42. 42.
    Nemati F, Livartowski A, De Cremoux P, Bourgeois Y, Arvelo F, Pouillart P, Poupon MF (2000) Distinctive potentiating effects of cisplatin and/or ifosfamide combined with etoposide in human small cell lung carcinoma xenografts. Clin Cancer Res 6(5):2075–2086PubMedGoogle Scholar
  43. 43.
    Nickisch K, Nair HB, Kesavaram N, Das B, Garfield R, Shi SQ, Bhaskaran SS, Grimm SL, Edwards DP (2013) Synthesis and antiprogestational properties of novel 17-fluorinated steroids. Steroids 78(9):909–919. doi: 10.1016/j.steroids.2013.04.003 CrossRefPubMedGoogle Scholar
  44. 44.
    Nishino T, Ishibashi K, Hirtreiter C, Nishino Y (2009) Potentiation of the antitumor effect of tamoxifen by combination with the antiprogestin onapristone. J Steroid Biochem Mol Biol 116(3–5):187–190. doi: 10.1016/j.jsbmb.2009.05.013 CrossRefPubMedGoogle Scholar
  45. 45.
    Olopade OI, Adeyanju MO, Safa AR, Hagos F, Mick R, Thompson CB, Recant WM (1997) Overexpression of BCL-x protein in primary breast cancer is associated with high tumor grade and nodal metastases. Cancer Journal from Scientific American 3(4):230–237PubMedGoogle Scholar
  46. 46.
    Oue T, Fukuzawa M, Kamata S, Okada A (1995) Immunohistochemical analysis of proliferating cell nuclear antigen expression in human neuroblastoma. J Pediatr Surg 30(4):528–532CrossRefPubMedGoogle Scholar
  47. 47.
    Petit-Topin I, Fay M, Resche-Rigon M, Ulmann A, Gainer E, Rafestin-Oblin ME, Fagart J (2014) Molecular determinants of the recognition of ulipristal acetate by oxo-steroid receptors. J Steroid Biochem Mol Biol 144(Pt B):427–435. doi: 10.1016/j.jsbmb.2014.08.008 CrossRefPubMedGoogle Scholar
  48. 48.
    Poole AJ, Li Y, Kim Y, Lin SC, Lee WH, Lee EY (2006) Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314(5804):1467–1470CrossRefPubMedGoogle Scholar
  49. 49.
    Proskuryakov SY, Gabai VL (2010) Mechanisms of tumor cell necrosis. Curr Pharm Des 16(1):56–68CrossRefPubMedGoogle Scholar
  50. 50.
    Ranney MK, Ahmed IS, Potts KR, Craven RJ (2007) Multiple pathways regulating the anti-apoptotic protein clusterin in breast cancer. Biochim Biophys Acta 1772(9):1103–1111. doi: 10.1016/j.bbadis.2007.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB (2002) Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 277(7):5209–5218CrossRefPubMedGoogle Scholar
  52. 52.
    Rudas M, Lehnert M, Huynh A, Jakesz R, Singer C, Lax S, Schippinger W et al (2008) Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen-based therapy. Clin Cancer Res 14(6):1767–1774. doi: 10.1158/1078-0432.ccr-07-4122 CrossRefPubMedGoogle Scholar
  53. 53.
    Schneider CC, Gibb RK, Taylor DD, Wan T, Gercel-Taylor C (1998) Inhibition of endometrial cancer cell lines by mifepristone (RU 486). J Soc Gynecol Investig 5(6):334–338CrossRefPubMedGoogle Scholar
  54. 54.
    Schreiber, V, Illuzzi G, Heberle E, Dantzer F. 2015. [From poly(ADP-ribose) discovery to PARP inhibitors in cancer therapy]. Bull Cancer. doi: 10.1016/j.bulcan.2015.07.012
  55. 55.
    Wargon V, Riggio M, Giulianelli S, Sequeira GR, Rojas P, May M, Polo ML et al (2015) Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the CCND1 and MYC promoters. Int J Cancer 136(11):2680–2692. doi: 10.1002/ijc.29304 CrossRefPubMedGoogle Scholar
  56. 56.
    Weil MK, Chen AP (2011) PARP inhibitor treatment in ovarian and breast cancer. Curr Probl Cancer 35(1):7–50. doi: 10.1016/j.currproblcancer.2010.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Whittle JR, Lewis MT, Lindeman GJ, Visvader JE (2015) Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res 17:17. doi: 10.1186/s13058-015-0523-1 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wiehle RD, Christov K, Mehta R (2007) Anti-progestins suppress the growth of established tumors induced by 7,12-dimethylbenz(a)anthracene: comparison between RU486 and a new 21-substituted-19-nor-progestin. Oncol Rep 18(1):167–174PubMedGoogle Scholar
  59. 59.
    Wiehle R, Lantvit D, Yamada T, Christov K (2011) CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis. Cancer Prev Res 4(3):414–424CrossRefGoogle Scholar
  60. 60.
    Xu Q, Takekida S, Ohara N, Chen W, Sitruk-Ware R, Johansson ED, Maruo T (2005) Progesterone receptor modulator CDB-2914 down-regulates proliferative cell nuclear antigen and Bcl-2 protein expression and up-regulates caspase-3 and poly(adenosine 5′-diphosphate-ribose) polymerase expression in cultured human uterine leiomyoma cells. J Clin Endocrinol Metab 90(2):953–961. doi: 10.1210/jc.2004-1569 CrossRefPubMedGoogle Scholar
  61. 61.
    Yun BS, Seong SJ, Cha DH, Kim JY, Kim ML, Shim JY, Park JE (2015) Changes in proliferating and apoptotic markers of leiomyoma following treatment with a selective progesterone receptor modulator or gonadotropin-releasing hormone agonist. Eur J Obstet Gynecol Reprod Biol 191:62–67. doi: 10.1016/j.ejogrb.2015.05.022 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nathalie Esber
    • 1
    • 2
    • 3
  • Clément Cherbonnier
    • 4
  • Michèle Resche-Rigon
    • 3
  • Abdallah Hamze
    • 5
  • Mouad Alami
    • 5
  • Jérôme Fagart
    • 1
    • 2
  • Hugues Loosfelt
    • 1
    • 2
  • Marc Lombès
    • 1
    • 2
    • 6
  • Nathalie Chabbert-Buffet
    • 7
    • 8
    • 9
    Email author
  1. 1.Inserm UMR-S 1185, Fac Med Paris Sud, Université Paris-SaclayKremlin-BicêtreFrance
  2. 2.University Paris-Sud, Université Paris-SaclayKremlin-BicêtreFrance
  3. 3.HRA-PharmaParisFrance
  4. 4.Service d’Anatomie et Cytologie Pathologiques, Hôpitaux Universitaires Est Parisien site Tenon, Assistance Publique-Hôpitaux de ParisParisFrance
  5. 5.Centre National de la Recherche Scientifique, BioCIS, Faculté de PharmacieChâtenay-MalabryFrance
  6. 6.Service d’Endocrinologie et des Maladies de la Reproduction, Assistance Publique-Hôpitaux de Paris, Hôpital BicêtreLe Kremlin BicêtreFrance
  7. 7.Service de Gynécologie Obstétrique Médecine de la Reproduction, Hôpitaux Universitaires Est Parisien site Tenon, Assistance Publique-Hôpitaux de ParisParisFrance
  8. 8.Inserm UMR-S 938, Centre de Recherche Saint Antoine, Université Pierre et Marie CurieParisFrance
  9. 9.Réseau CALG (Cancer Associé a la Grossesse)ParisFrance

Personalised recommendations