Advertisement

Hormones and Cancer

, Volume 6, Issue 2–3, pp 87–99 | Cite as

Characterization of Thyroid Cancer Cell Lines in Murine Orthotopic and Intracardiac Metastasis Models

  • Jennifer A. Morrison
  • Laura A. Pike
  • Greg Lund
  • Qiong Zhou
  • Brittelle E. Kessler
  • Kevin T. Bauerle
  • Sharon B. Sams
  • Bryan R. Haugen
  • Rebecca E. Schweppe
Original Paper

Abstract

Thyroid cancer incidence has been increasing over time, and it is estimated that ∼1950 advanced thyroid cancer patients will die of their disease in 2015. To combat this disease, an enhanced understanding of thyroid cancer development and progression as well as the development of efficacious, targeted therapies are needed. In vitro and in vivo studies utilizing thyroid cancer cell lines and animal models are critically important to these research efforts. In this report, we detail our studies with a panel of authenticated human anaplastic and papillary thyroid cancer (ATC and PTC) cell lines engineered to express firefly luciferase in two in vivo murine cancer models—an orthotopic thyroid cancer model as well as an intracardiac injection metastasis model. In these models, primary tumor growth in the orthotopic model and the establishment and growth of metastases in the intracardiac injection model are followed in vivo using an IVIS imaging system. In the orthotopic model, the ATC cell lines 8505C and T238 and the PTC cell lines K1/GLAG-66 and BCPAP had take rates >90 % with final tumor volumes ranging 84–214 mm3 over 4–5 weeks. In the intracardiac model, metastasis establishment was successful in the ATC cell lines HTh74, HTh7, 8505C, THJ-16T, and Cal62 with take rates ≥70 %. Only one of the PTC cell lines tested (BCPAP) was successful in the intracardiac model with a take rate of 30 %. These data will be beneficial to inform the choice of cell line and model system for the design of future thyroid cancer studies.

Keywords

Thyroid Cancer Papillary Thyroid Cancer Thyroid Cancer Cell Anaplastic Thyroid Cancer TERT Promoter Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Dr. Jeffrey Knauf at Memorial Sloan Kettering Cancer Center for Sequenom analysis of the cell lines, Drs. Jeffrey Myers and Maria Gule at MD Anderson Cancer Center for their guidance in establishing the orthotopic thyroid cancer model, and Dr. Carol Sartorius at the University of Colorado for her guidance in establishing the intracardiac injection model. We also thank Randall Wong at the B. Davis Center BioResources Core Facility, Molecular Biology Unit, and Dr. Christopher Korch, UCCC, for STR profiling of the cell lines. This work was supported by National Cancer Institute grant K12CA086913-13 (RES), 1R01CA164193 (RES), American Cancer Society RSG-13-060-01-TBE (RES), 1 RC1 CA147371 (RES and BRH), and 1R01CA155512-01A1 (BRH). The UCCC Flow Cytometry Core, UCCC Sequencing and Analysis Core (for STR profiling), UCCC Pathology Core, and UCCC Small Animal Imaging Cores are supported by NCI Cancer Center support grant P30 CA046934.

Conflict of Interest

None

Supplementary material

12672_2015_219_MOESM1_ESM.pptx (2.2 mb)
Supplemental Fig. 1 BCPAP PTC cells form tumors and lung metastases in the orthotopic tumor model. A representative H&E stained primary tumor specimen is shown at ×10 and ×20 magnification (a). Arrow indicates area of normal thyroid follicles. Lung micrometastases were identified in lung tissue harvested from mice at necropsy and are shown at ×20 magnification (b). (PPTX 2266 kb)

References

  1. 1.
    Ahn SH, Henderson Y, Kang Y, Chattopadhyay C, Holton P, Wang M, Briggs K, Clayman GL (2008) An orthotopic model of papillary thyroid carcinoma in athymic nude mice. Arch Otolaryngol Head Neck Surg 134(2):190–197. doi: 10.1001/archoto.2007.36 CrossRefPubMedGoogle Scholar
  2. 2.
    Alfano RW, Leppla SH, Liu S, Bugge TH, Ortiz JM, Lairmore TC, Duesbery NS, Mitchell IC, Nwariaku F, Frankel AE (2010) Inhibition of tumor angiogenesis by the matrix metalloproteinase-activated anthrax lethal toxin in an orthotopic model of anaplastic thyroid carcinoma. Mol Cancer Ther 9(1):190–201. doi: 10.1158/1535-7163.MCT-09-0694 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Antonello ZA, Nucera C (2014) Orthotopic mouse models for the preclinical and translational study of targeted therapies against metastatic human thyroid carcinoma with BRAF or wild-type BRAF. Oncogene 33(47):5397–5404. doi: 10.1038/onc.2013.544 CrossRefPubMedGoogle Scholar
  4. 4.
    Bauerle KT, Schweppe RE, Lund G, Kotnis G, Deep G, Agarwal R, Pozdeyev N, Wood WM, Haugen BR (2014) Nuclear factor kappaB-dependent regulation of angiogenesis, and metastasis in an in vivo model of thyroid cancer is associated with secreted interleukin-8. J Clin Endocrinol Metab 99(8):E1436–E1444. doi: 10.1210/jc.2013-3636 CrossRefPubMedGoogle Scholar
  5. 5.
    Bellelli R, Castellone MD, Garcia-Rostan G, Ugolini C, Nucera C, Sadow PM, Nappi TC et al (2012) FOXM1 is a molecular determinant of the mitogenic and invasive phenotype of anaplastic thyroid carcinoma. Endocr Relat Cancer 19(5):695–710. doi: 10.1530/ERC-12-0031 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, de la Fouchardiere C et al (2014) Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384(9940):319–328. doi: 10.1016/S0140-6736(14)60421-9 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Cardiff RD, Miller CH, Munn RJ (2014) Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc 6:655–658. doi: 10.1101/pdb.prot073411 Google Scholar
  8. 8.
    Chan CM, Jing X, Pike LA, Zhou Q, Lim DJ, Sams SB, Lund GS, Sharma V, Haugen BR, Schweppe RE (2012) Targeted inhibition of Src kinase with dasatinib blocks thyroid cancer growth and metastasis. Clin Cancer Res 18(13):3580–3591. doi: 10.1158/1078-0432.CCR-11-3359 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Chang JW, Kang SU, Choi JW, Shin YS, Baek SJ, Lee SH, Kim CH (2014) Tolfenamic acid induces apoptosis and growth inhibition in anaplastic thyroid cancer: involvement of nonsteroidal anti-inflammatory drug-activated gene-1 expression and intracellular reactive oxygen species generation. Free Radic Biol Med 67:115–130. doi: 10.1016/j.freeradbiomed.2013.10.818 CrossRefPubMedGoogle Scholar
  10. 10.
    Garg M, Okamoto R, Nagata Y, Kanojia D, Venkatesan,T. A. M, G. D. Braunstein et al. (2014) Establishment and characterization of novel human primary and metastatic anaplastic thyroid cancer cell lines and their genomic evolution over a year as a primagraft. J Clin Endocrinol Metab jc20142359. doi: 10.1210/jc.2014-2359
  11. 11.
    Grant CS, Thompson G (2011) Anaplastic thyroid carcinoma: hope on the horizon? Surgery 150(6):1220–1221. doi: 10.1016/j.surg.2011.10.006 CrossRefPubMedGoogle Scholar
  12. 12.
    Gule MK, Chen Y, Sano D, Frederick MJ, Zhou G, Zhao M, Milas ZL et al (2011) Targeted therapy of VEGFR2 and EGFR significantly inhibits growth of anaplastic thyroid cancer in an orthotopic murine model. Clin Cancer Res 17(8):2281–2291. doi: 10.1158/1078-0432.CCR-10-2762 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Gunda V, Bucur O, Varnau J, Vanden Borre P, Bernasconi MJ, Khosravi-Far R, Parangi S (2014) Blocks to thyroid cancer cell apoptosis can be overcome by inhibition of the MAPK and PI3K/AKT pathways. Cell Death Dis 5:e1104. doi: 10.1038/cddis.2014.78 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Gunda V, Frederick DT, Bernasconi MJ, Wargo JA, Parangi S (2014) A potential role for immunotherapy in thyroid cancer by enhancing NY-ESO-1 cancer antigen expression. Thyroid 24(8):1241–1250. doi: 10.1089/thy.2013.0680 CrossRefPubMedGoogle Scholar
  15. 15.
    Henderson YC, Ahn SH, Clayman GL (2009) Inhibition of the growth of papillary thyroid carcinoma cells by CI-1040. Arch Otolaryngol Head Neck Surg 135(4):347–354. doi: 10.1001/archoto.2009.17 CrossRefPubMedGoogle Scholar
  16. 16.
    Henderson YC, Ahn SH, Kang Y, Clayman GL (2008) Sorafenib potently inhibits papillary thyroid carcinomas harboring RET/PTC1 rearrangement. Clin Cancer Res 14(15):4908–4914. doi: 10.1158/1078-0432.CCR-07-1772 CrossRefPubMedGoogle Scholar
  17. 17.
    Henderson YC, Ahn SH, Ryu J, Chen Y, Williams MD, El-Naggar AK, Gagea M et al. (2015) Development and characterization of six new human papillary thyroid carcinoma cell lines. J Clin Endocrinol Metab jc20142624. doi: 10.1210/jc.2014-2624
  18. 18.
    Henderson YC, Chen Y, Frederick MJ, Lai SY, Clayman GL (2010) MEK inhibitor PD0325901 significantly reduces the growth of papillary thyroid carcinoma cells in vitro and in vivo. Mol Cancer Ther 9(7):1968–1976. doi: 10.1158/1535-7163.MCT-10-0062 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Henderson YC, Toro-Serra R, Chen Y, Ryu J, Frederick MJ, Zhou G, Gallick GE, Lai SY, Clayman GL (2014) Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck 36(3):375–384. doi: 10.1002/hed.23316 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Jenkins DE, Hornig YS, Oei Y, Dusich J, Purchio T (2005) Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice. Breast Cancer Res 7(4):R444–R454. doi: 10.1186/bcr1026 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Jeong WJ, Mo JH, Park MW, Choi IJ, An SY, Jeon EH, Ahn SH (2011) Sunitinib inhibits papillary thyroid carcinoma with RET/PTC rearrangement but not BRAF mutation. Cancer Biol Ther 12(5):458–465CrossRefPubMedGoogle Scholar
  22. 22.
    Kang Y (2009) Analysis of cancer stem cell metastasis in xenograft animal models. In: Yu JS (ed) Methods in molecular biology. Humana Press, New YorkGoogle Scholar
  23. 23.
    Kim S, Park YW, Schiff BA, Doan DD, Yazici Y, Jasser SA, Younes M, Mandal M, Bekele BN, Myers JN (2005) An orthotopic model of anaplastic thyroid carcinoma in athymic nude mice. Clin Cancer Res 11(5):1713–1721. doi: 10.1158/1078-0432.CCR-04-1908 CrossRefPubMedGoogle Scholar
  24. 24.
    Lee SE, Lee JU, Lee MH, Ryu MJ, Kim SJ, Kim YK, Choi MJ et al. (2013) RAF kinase inhibitor-independent constitutive activation of Yes-associated protein 1 promotes tumor progression in thyroid cancer. Oncogenesis 2:e55. doi: 10.1038/oncsis.2013.12
  25. 25.
    Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, Sun H, El-Naggar AK, Xing M (2013) Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer 20(4):603–610. doi: 10.1530/ERC-13-0210 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Liu X, Qu S, Liu R, Sheng C, Shi X, Zhu G, Murugan AK et al (2014) TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab 99(6):E1130–E1136. doi: 10.1210/jc.2013-4048 CrossRefPubMedGoogle Scholar
  27. 27.
    Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, Celestino R et al (2014) TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 99(5):E754–E765. doi: 10.1210/jc.2013-3734 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Mo JH, Choi IJ, Jeong WJ, Jeon EH, Ahn SH (2012) HIF-1alpha and HSP90: target molecules selected from a tumorigenic papillary thyroid carcinoma cell line. Cancer Sci 103(3):464–471. doi: 10.1111/j.1349-7006.2011.02181.x CrossRefPubMedGoogle Scholar
  29. 29.
    Morrison JA, Pike LA, Sams SB, Sharma V, Zhou Q, Severson JJ, Tan A-C, Wood WM, Haugen BR (2014) Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol Cancer in pressGoogle Scholar
  30. 30.
    Muzza M, Colombo C, Rossi S, Tosi D, Cirello V, Perrino M, De Leo S et al (2015) Telomerase in differentiated thyroid cancer: promoter mutations, expression and localization. Mol Cell Endocrinol 399:288–295. doi: 10.1016/j.mce.2014.10.019 CrossRefPubMedGoogle Scholar
  31. 31.
    Nehs MA, Nagarkatti S, Nucera C, Hodin RA, Parangi S (2010) Thyroidectomy with neoadjuvant PLX4720 extends survival and decreases tumor burden in an orthotopic mouse model of anaplastic thyroid cancer. Surgery 148(6):1154–1162. doi: 10.1016/j.surg.2010.09.001, discussion 1162CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Nehs MA, Nucera C, Nagarkatti SS, Sadow PM, Morales-Garcia D, Hodin RA, Parangi S (2012) Late intervention with anti-BRAF(V600E) therapy induces tumor regression in an orthotopic mouse model of human anaplastic thyroid cancer. Endocrinology 153(2):985–994. doi: 10.1210/en.2011-1519 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Nucera C, Nehs MA, Mekel M, Zhang X, Hodin R, Lawler J, Nose V, Parangi S (2009) A novel orthotopic mouse model of human anaplastic thyroid carcinoma. Thyroid 19(10):1077–1084. doi: 10.1089/thy.2009.0055 CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Nucera C, Nehs MA, Nagarkatti SS, Sadow PM, Mekel M, Fischer AH, Lin PS et al (2011) Targeting BRAFV600E with PLX4720 displays potent antimigratory and anti-invasive activity in preclinical models of human thyroid cancer. Oncologist 16(3):296–309. doi: 10.1634/theoncologist. 2010-0317 CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Nucera C, Porrello A, Antonello ZA, Mekel M, Nehs MA, Giordano TJ, Gerald D et al (2010) B-Raf(V600E) and thrombospondin-1 promote thyroid cancer progression. Proc Natl Acad Sci USA 107(23):10649–10654. doi: 10.1073/pnas.1004934107 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Reeb AN, Li W, Sewell W, Marlow LA, Tun HW, Smallridge RC, Copland JA, Spradling K, Chernock R, Lin RY (2014) S100A8 is a novel therapeutic target for anaplastic thyroid carcinoma. J Clin Endocrinol Metab 100 (2):E232–E242. doi: 10.1210/jc.2014-2988
  37. 37.
    Ribeiro FR, Meireles AM, Rocha AS, Teixeira MR (2008) Conventional and molecular cytogenetics of human non-medullary thyroid carcinoma: characterization of eight cell line models and review of the literature on clinical samples. BMC Cancer 8:371. doi: 10.1186/1471-2407-8-371 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Sandulache VC, Skinner HD, Wang Y, Chen Y, Dodge CT, Ow TJ, Bankson JA, Myers JN, Lai SY (2012) Glycolytic inhibition alters anaplastic thyroid carcinoma tumor metabolism and improves response to conventional chemotherapy and radiation. Mol Cancer Ther 11(6):1373–1380. doi: 10.1158/1535-7163.MCT-12-0041 CrossRefPubMedGoogle Scholar
  39. 39.
    Scarpino S, Duranti E, Giglio S, Di Napoli A, Galafate D, Del Bufalo D, Desideri M, Socciarelli F, Stoppacciaro A, Ruco L (2013) Papillary carcinoma of the thyroid: high expression of COX-2 and low expression of KAI-1/CD82 are associated with increased tumor invasiveness. Thyroid 23(9):1127–1137. doi: 10.1089/thy.2011.0421 CrossRefPubMedGoogle Scholar
  40. 40.
    Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA et al (2008) Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab 93(11):4331–4341. doi: 10.1210/jc.2008-1102 CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics. CA Cancer J Clin 65(1):5–29. doi: 10.3322/caac.21254 CrossRefPubMedGoogle Scholar
  42. 42.
    Smallridge RC, Copland JA (2010) Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol (R Coll Radiol) 22(6):486–497. doi: 10.1016/j.clon.2010.03.013 CrossRefGoogle Scholar
  43. 43.
    Vanden Borre P, McFadden DG, Gunda V, Sadow PM, Varmeh S, Bernasconi M, Jacks T, Parangi S (2014) The next generation of orthotopic thyroid cancer models: immunocompetent orthotopic mouse models of BRAF V600E-positive papillary and anaplastic thyroid carcinoma. Thyroid 24(4):705–714. doi: 10.1089/thy.2013.0483 CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Wood WM, Sharma V, Bauerle KT, Pike LA, Zhou Q, Fretwell DL, Schweppe RE, Haugen BR (2011) PPARgamma promotes growth and invasion of thyroid cancer cells. PPAR Res 2011:171765. doi: 10.1155/2011/171765
  45. 45.
    Xing M (2013) Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 13(3):184–199. doi: 10.1038/nrc3431 CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Zhang L, Gaskins K, Yu Z, Xiong Y, Merino MJ, Kebebew E (2014) An in vivo mouse model of metastatic human thyroid cancer. Thyroid 24(4):695–704. doi: 10.1089/thy.2013.0149 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jennifer A. Morrison
    • 1
  • Laura A. Pike
    • 1
  • Greg Lund
    • 1
  • Qiong Zhou
    • 1
  • Brittelle E. Kessler
    • 1
  • Kevin T. Bauerle
    • 1
  • Sharon B. Sams
    • 2
  • Bryan R. Haugen
    • 1
    • 2
  • Rebecca E. Schweppe
    • 1
    • 2
  1. 1.Department of Medicine, Division of Endocrinology, Metabolism and DiabetesUniversity of Colorado Anschutz Medical CampusAuroraUSA
  2. 2.Department of PathologyUniversity of Colorado Anschutz Medical CampusAuroraUSA

Personalised recommendations