Small Molecule Hormone or Hormone-Like Ligands of Integrin αVβ3: Implications for Cancer Cell Behavior

Abstract

Integrins are heterodimeric structural components of the plasma membrane whose ligands include a large number of extracellular matrix (ECM) proteins. The ligands contain Arg–Gly–Asp (RGD) sequences that enable recognition of ECM proteins by as many as eight integrins, but other distinguishing features of the proteins permit the integrins to generate intracellular signals specific to the ECM molecules. Recently, integrin αvβ3 has been shown to have a panel of previously unappreciated small molecule receptor sites for thyroid hormone and hormone analogues, for dihydrotestosterone, and for resveratrol, a polyphenol that has certain estrogen-like features. These binding sites are close to the RGD recognition site of αvβ3. The thyroid hormone receptor site on the extracellular domain of αvβ3 contains two domains with discrete functions in terms of intracellular protein trafficking and gene expression. Occupancy of the receptor by a deaminated thyroid hormone analogue, tetraiodothyroacetic acid (tetrac), prevents cell responses to agonist thyroid hormones (l-thyroxine; 3, 5, 3′-triiodo-l-thyronine) and modulates expression of a number of cancer cell survival pathway genes in an up- or downregulation pattern coherent to induction of cell death. The small molecule thyroid hormone receptor on the integrin also regulates activity of five vascular growth factor receptors and/or their ligands, providing control of angiogenesis via specific pharmacologic regulation of this thyroid hormone receptor. The resveratrol receptor induces programmed cancer cell death via p53, even when the latter has undergone specific mutations. There is also evidence for the presence of several receptors on integrin αvβ3 for authentic steroids, including a dihydrotestosterone site that supports proliferation of breast cancer cells that lack nuclear androgen and estrogen receptors. The existence of these small molecule hormone receptors on an integrin with a remarkably complex functional profile defines novel pharmacologic options via individual small molecule receptor manipulation for control of cancer cell behavior. This refinement of up-down control at the level of discrete receptors is not a function of the use of αvβ3 antibody or RGD peptides that occlude regions of the integrin.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Campbell ID, Humphries MJ (2011) Integrin structure, activation and interactions. Cold Spring Harb Perspect Biol 3:a004994

    PubMed  Article  Google Scholar 

  3. 3.

    Huttenlocher A, Horwitz AR (2011) Integrins in cell migration. Cold Spring Harb Perspect Biol 3(9):a005074

    PubMed  Article  Google Scholar 

  4. 4.

    Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Somananth PR, Ciocea A, Byzova TV (2009) Integrin and growth factor receptor alliance in angiogenesis. Cell Biochem Biophys 53:53–64

    Article  Google Scholar 

  6. 6.

    Eliceiri BP (2001) Integrin and growth factor receptor crosstalk. Circ Res 89:1104–1110

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ (2005) Integrin αvβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY (2011) Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 51:99–115

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31:139–170

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Davis PJ, Glinsky GV, Lin HY, Incerpi S, Davis FB, Mousa SA, Tang HY, Hercbergs A, Luidens MK (2013) Molecular mechanisms of actions of formulations of the thyroid hormone analogue, tetrac, on the inflammatory response. Endocr Res 38:112–118

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Farwell AP, Tranter MP, Leonard JL (1995) Thyroxine-dependent regulation of integrin-laminin interactions in astrocytes. Endocrinology 136:3909–3915

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Leonard JL, Farwell AP (1997) Thyroid hormone-regulated actin polymerization in brain. Thyroid 7:147–151

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Hoffman SJ, Vasko-Moser J, Miller WH, Lark MW, Gowen M, Stroup G (2002) Rapid inhibition of thyroxine-induced bone resorption in the rat by an orally active vitronectin receptor antagonist. J Pharmacol Exp Ther 302:205–211

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Davis FB, Mousa SA, O'Connor L, Mohamed S, Lin HY, Cao HJ, Davis PJ (2004) Proangiogeneic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ Res 94:1500–1506

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Mousa SA, O'Connor L, Davis FB, Davis PJ (2006) Proangiogenesis action of the thyroid hormone analog 3, 5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin-mediated. Endocrinology 1476:1602–1607

    Google Scholar 

  16. 16.

    Mousa SA, O'Connor LJ, Bergh JJ, Davis FB, Scanlan TS, Davis PJ (2005) The proangiogenic action of thyroid hormone analogue GC-1 is initiated at an integrin. J Cardiovasc Pharmacol 46:356–360

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Cody V, Davis PJ, Davis FB (2007) Molecular modeling of the thyroid hormone interactions with αvβ3 integrin. Steroids 72:166–170

    Article  Google Scholar 

  18. 18.

    Lin HY, Cody V, Davis FB, Hercbergs AA, Luidens MK, Mousa SA, Davis PJ (2011) Identification and functions of the plasma membrane receptor for thyroid hormone analogues. Discov Med 11:337–347

    PubMed  Google Scholar 

  19. 19.

    Lin HY, Su Y-F, Hsieh M-T, Lin S, Meng R, London D, Lin C, Tang H-Y, Hwang J, Davis FB, Mousa SA, Davis PJ (2013) Nuclear monomeric integrin αv in cancer cells is a co-activator regulated by thyroid hormone. FASEB J 27:3209–3216

    Google Scholar 

  20. 20.

    Lin HY, Sun M, Tang HY, Lin C, Luidens MK, Mousa SA, Incerpi S, Drusano GL, Davis FB, Davis PJ (2009) l-Thyroxine vs. 3, 5, 3′-triiodo-l-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell Physiol 296:C980–C991

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Incerpi S, Luly P, De Vito P, Farias RN (1999) Short-term effects of thyroid hormone on the Na/H antiport in l-6 myoblasts: high molecular specificity for 3, 5, 3′-triiodo-l-thyronine. Endocrinology 140:683–689

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    D'Arezzo S, Incerpi S, Davis FB, Acconcia F, Marino M, Farias RN, Davis PJ (2004) Rapid nongenomic effects of 3, 5, 3′-triiodo-l-thyronine on the intracellular pH of l-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways

  23. 23.

    Amith SR, Fliegel L (2013) Regulation of the Na+/H+ exchanger (NHE1) in breast cancer metastasis. Cancer Res 73:1259–1264

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Stock C, Ludwig FT, Schwab A (2012) Is the multifunctional Na(+)/H(+) exchanger isoform 1 a potential therapeutic target in cancer? Curr Med Chem 19:647–660

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Moreno M, de Lange P, Lombardi A, Silvestri E, Lanni A, Goglia F (2008) Metabolic effects of thyroid hormone derivatives. Thyroid 18:239–253

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Bharali DJ, Yalcin M, Davis PJ, Mousa SA (2013) Tetraiodothyroacetic acid-conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer. Nanomedicine (in press)

  27. 27.

    Mousa SA, Bergh JJ, Dier E, Rebbaa A, O'Connor LJ, Yalcin M, Aljada A, Dyskin E, Davis FB, Lin HY, Davis PJ (2008) Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11:183–190

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Safer JD, Crawford TM, Holick MF (2004) Topical thyroid hormone accelerates wound healing in mice. Endocrinology 145:4425–4430

    Article  Google Scholar 

  29. 29.

    El-Eter E, Rabee H, Alkayali A, Mousa SA (2007) Role of thyroid hormone analogs in angiogenesis and the development of collaterals in rabbit hind limb ischemia model. J Thromb Thrombolysis 5(suppl 1):375

    Google Scholar 

  30. 30.

    Glinskii AB, Glinsky GV, Lin HY, Tang HY, Sun M, Davis FB, Luidens MK, Mousa SA, Hercbergs AH, Davis PJ (2009) Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac). Cell Cycle 8:3554–3562

    PubMed  Google Scholar 

  31. 31.

    Meng R, Tang HY, Westfall J, London D, Cao JH, Mousa SA, Luidens M, Hercbergs A, Davis FB, Davis PJ, Lin HY (2011) Crosstalk between integrin αvβ3 and estrogen receptor-α is involved in thyroid hormone-induced proliferation in human lung carcinoma cells. PLoS One 6(11):e27547

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Mousa SA, Yalcin M, Bharali DJ, Meng R, Tang HY, Lin HY, Davis FB, Davis PJ (2012) Tetraiodothyroacetic acid and its nanoformulation inhibit thyroid hormone stimulation of non-small cell lung cancer cells in vitro and in xenografts. Lung Cancer 76:39–45

    PubMed  Article  Google Scholar 

  33. 33.

    Yalcin M, Lin HY, Sudha T, Bharali DJ, Meng R, Tang HY, Davis FB, Stain SC, Davis PJ, Mousa SA (2013) Response of human pancreatic cancer cell xenografts to tetraiodothyroacctic acid nanoparticles. Horm Cancer 4:176–185

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Yalcin M, Dyskin E, Lansing L, Bharali DJ, Mousa SS, Bridoux A, Hercbergs AH, Lin HY, Davis FB, Glinsky GV, Glinskii A, Ma J, Davis PJ, Mousa SA (2010) Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. J Clin Endocrinol Metab 95:1972–1980

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Yalcin M, Bharali DJ, Dyskin E, Dier E, Lansing L, Mousa SS, Davis FB, Davis PJ, Mousa SA (2010) Tetraiodothyroacetic acid and tetraiodothyroacetic acid nanoparticle effectively inhibit the growth of human follicular thyroid cell carcinoma. Thyroid 20:281–286

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Yalcin M, Bharali DJ, Lansing L, Dyskin E, Mousa SS, Hercbergs A, Davis FB, Davis PJ, Mousa SA (2009) Tetraiodothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res 29:3825–3831

    PubMed  CAS  Google Scholar 

  37. 37.

    Hercbergs A, Davis PJ, Davis FB, Ciesielski MJ, Leith JT (2009) Radiosensitization of GL261 cells by tetraiodothyroacetic acid (tetrac). Cell Cycle 8:2586–2591

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Hercbergs A, Lin HY, Davis FB, Davis PJ, Leith JT (2011) Radiosensitization and production of DNA double-strand breaks in U87MG brain tumor cells induced by tetraiodothyroacetic acid (tetrac). Cell Cycle 10:352–357

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Rebbaa A, Chu F, Davis FB, Davis PJ, Mousa SA (2008) Novel function of the thyroid hormone analog tetraiodothyroacetic acid: a cancer chemosensitizing and anti-cancer agent. Angiogenesis 11:269–276

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Hsieh IS, Huang WH, Liou HC, Chuang WJ, Yan RS, Fu WM (2013) Upregulation of drug transporter expression by osteopontin in prostate cancer cells. Mol Pharmacol 83:968–977

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Nishio N, Katsura T, Inui K (2008) Thyroid hormone regulates the expression and function of P-glycoprotein in Caco-2 cells. Pharm Res 25:1037–1042

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberian FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 72:69–82

    CAS  Google Scholar 

  43. 43.

    Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Morris BJ (2013) Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med 56:133–171

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Villalba JM, de Cabo R, Alcain FJ (2012) A patent review of sirtuin activators: an update. Expert Opin Ther Pat 22:355–367

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Gehm GD, McAndrews JM, Chien PY, Jameson JL (1997) Resveratrol, a polyphenol compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A 94:14138–14143

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Shih A, Davis FB, Lin HY, Davis PJ (2002) Resveratrol induces apoptosis in thyroid cancer cell lines via a MAPK- and p53-dependent mechanism. J Clin Endocrinol Metab 87:1223–1232

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Lin HY, Shih A, Davis FB, Tang HY, Martino LJ, Bennett JA, Davis PJ (2002) Resveratrol induced serine phosphorylation of p53 causes apoptosis in a mutant p53 prostate cancer cell line. J Urol 168:748–755

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Zhang S, Cao HJ, Davis FB, Tang HY, Davis PJ, Lin HY (2004) Oestrogen inhibits resveratrol-induced post-translational modification of p53 and apoptosis in breast cancer cells. Br J Cancer 91:l178–l185

    Article  Google Scholar 

  50. 50.

    Shih A, Zhang S, Cao HJ, Boswell S, Wu YH, Tang HY, Lennartz MR, Davis FB, Davis PJ, Lin HY (2004) Inhibitory effect of epidermal growth factor on resveratrol-induced apoptosis in prostate cancer cells is mediated by protein kinase C-alpha. Mol Cancer Ther 3:1355–1364

    PubMed  CAS  Google Scholar 

  51. 51.

    Lin HY, Lansing L, Merillon JM, Davis FB, Tang HY, Shih A, Vitrac X, Krisa S, Keating T, Cao HJ, Bergh J, Quackenbush S, Davis PJ (2006) Integrin alphavbeta3 contains a receptor site for resveratrol. FASEB J 20:1742–1744

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Hsieh TC, Wong C, John Bennett D, Wu JM (2011) Regulation of p53 and cell proliferation by resveratrol and its derivatives in breast cancer cells: an in silico and biochemical approach targeting integrin αvβ3. Int J Cancer 129:2732–2743

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Lin HY, Tang HY, Keating T, Wu YH, Shih A, Hammond D, Sun M, Hercbergs A, Davis FB, Davis PJ (2008) Resveratrol is pro-apoptotic and thyroid hormone is anti-apoptotic in glioma cells: both actions are integrin and ERK mediated. Carcinogenesis 29:62–69

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Harris RE (2009) Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate and lung. Inflammopharmacology 17:55–67

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Tang HY, Shih A, Cao HJ, Davis FB, Davis PJ, Lin HY (2006) Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol Cancer Ther 5:2034–2042

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Lin HY, Sun M, Lin C, Tang HY, London D, Shih A, Davis FB, Davis PJ (2009) Androgen-induced human breast cancer cell proliferation is mediated by discrete mechanisms in estrogen receptor-alpha-positive and –negative breast cancer cells. J Steroid Biochem Mol Biol 113:182–188

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Levin ER (2009) Plasma membrane estrogen receptors. Trends Endocrinol Metab 20:477–482

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Kelly MJ, Ronnekleiv OK (2012) Membrane-initiated actions of estradiol that regulate reproduction, energy balance and body temperature. Front Neuroendocrinol 33:376–387

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Hammes SR, Levin ER (2011) Minireview: recent advances in extranuclear steroid receptor actions. Endocrinology 152:4489–4495

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Dressing GE, Goldberg JE, Charles NJ, Schwertfeger KL, Lange CA (2011) Membrane progesterone receptor expression in mammalian tissues: a review of regulation and physiological implications. Steroids 76:11–17

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Lessey BA (2003) Two pathways of progesterone action in the human endometrium: implications for implantation and contraception. Steroids 68:809–815

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Filla MS, Schwinn MK, Nosie AK, Clark RW, Peters DM (2011) Dexamethasone-associated cross-linked actin network formation in human trabecular meshwork cells involves β3 integrin signaling. Invest Ophthalmol Vis Sci 52:2952–2959

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Zheleznyak A, Wadas TJ, Sherman CD, Wilson JM, Kostenuik PJ, Weilbaecher KN, Anderson CJ (2012) Integrin α(v)β3 as a PET imaging biomarker for osteoclast number in mouse models of negative and positive osteoclast regulation. Mol Imaging Biol 14:500–508

    PubMed  Article  Google Scholar 

  64. 64.

    Nakamura I, le Duong T, Rodan SB, Rodan GA (2007) Involvement of alpha(v)beta3 integrins in osteoclast function. J Bone Miner Metab 25:337–344

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Mousa SA, Davis FB, Mohamed S, Davis PJ, Feng X (2006) Pro-angiogenesis action of thyroid hormone and analogs in a three-dimensional in vitro microvascular endothelial sprouting model. Int Angiol 25:407–413

    PubMed  CAS  Google Scholar 

  66. 66.

    Mas-Moruno C, Dorfner PM, Manzenrieder F, Neubauer S, Reuning U, Burgkart R, Kessler H (2013) Behavior of primary human osteoblasts on trimmed and sandblasted Ti6A14V surfaces functionalized with integrin αvβ3-selective cyclic RGD peptides. J Biomed Mater Res A 101:87–97

    PubMed  Google Scholar 

  67. 67.

    Mao X, Said R, Louis H, Max JP, Bourhim M, Challande P, Wahl D, Li Z, Regnault V, Lacolley P (2012) Cyclic stretch-induced thrombin generation by rat vascular smooth muscle cells is mediated by the integrin αvβ3 pathway. Cardiovasc Res 96(3):513–523

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Kasirer-Friede A, Kahn ML, Shattil SJ (2007) Platelet integrins and immunoreceptors. Immunol Rev 218:247264

    Article  Google Scholar 

  69. 69.

    Mousa SS, Davis FB, Davis PJ, Mousa SA (2010) Human platelet aggregation and degranulation is induced in vitro by l-thyroxine, but not by 3,5,3′-triiodo-l-thyronine or diiodothyropropionic acid (DITPA). Clin Appl Thromb Hemost 16:288–293

    PubMed  Article  Google Scholar 

  70. 70.

    Wilder RL (2002) Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis 61(Suppl 2):ii96–ii99

    PubMed  CAS  Google Scholar 

  71. 71.

    Laitinen I, Notni J, Phle K, Rudelius M, Farrell E, Nekolla SG, Henriksen G, Neubauer S, Kessler H, Wesler HJ, Schwaiger M (2013) Comparison of cyclic RGD peptides for αvβ3 integrin detection in a rat model of myocardial infarction. EJNMMI Res 3(1):38

    PubMed  Article  Google Scholar 

  72. 72.

    Mittra ES, Goris ML, Iagaru AH, Kardan A, Burton L, Berganos R, Chang E, Liu S, Shen B, Chin FT, Chen X, Gambhir SS (2011) Pilot pharmacokinetic and dosimetric studies of (18)F-FPPRGD2: a PET radiopharmaceutical agent for imaging α(v)β(3) integrin levels. Radiology 260:182–191

    PubMed  Article  Google Scholar 

  73. 73.

    Freindorf M, Furlani TR, Kong J, Cody V, Davis FB, Davis PJ (2012) Combined QM/MM study of thyroid and steroid hormone analogue interactions with αvβ3 integrin. J Biomed Biotechnol 2012:959057

Download references

Acknowledgments

The authors appreciate the support of Candace K. Weir, Margaret D. Rudy, and the late M. Frank Rudy for some of the studies reported in this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul J. Davis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Davis, P.J., Mousa, S.A., Cody, V. et al. Small Molecule Hormone or Hormone-Like Ligands of Integrin αVβ3: Implications for Cancer Cell Behavior. HORM CANC 4, 335–342 (2013). https://doi.org/10.1007/s12672-013-0156-8

Download citation

Keywords

  • Thyroid Hormone
  • Resveratrol
  • Receptor Site
  • Fulvestrant
  • Thyroid Hormone Receptor