Kim JJ, Rini BI, Hansel DE (2010) Von Hippel Lindau syndrome. Adv Exp Med Biol 685:228–249, Epub 2010/08/07. PubMed PMID: 20687511
PubMed
CAS
Google Scholar
Shehata BM, Stockwell CA, Castellano-Sanchez AA, Setzer S, Schmotzer CL, Robinson H (2008) Von Hippel-Lindau (VHL) disease: an update on the clinico-pathologic and genetic aspects. Adv Anat Pathol 15(3):165–171. doi:10.1097/PAP.0b013e31816f852e, Epub 2008/04/25. PubMed PMID: 18434768
PubMed
Google Scholar
Kloppel G, Perren A, Heitz PU (2004) The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann N Y Acad Sci 1014:13–27, Epub 2004/05/22. PubMed PMID: 15153416
PubMed
Google Scholar
Rindi G, Kloppel G, Alhman H, Caplin M, Couvelard A, de Herder WW et al (2006) TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 449(4):395–401. doi:10.1007/s00428-006-0250-1, Epub 2006/09/13. PubMed PMID: 16967267; PubMed Central PMCID: PMC1888719
PubMed
CAS
Google Scholar
Kloppel G (2011) Classification and pathology of gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer 18(Suppl 1):S1–S16. doi:10.1530/ERC-11-0013, Epub 2011/10/26. PubMed PMID: 22005112
PubMed
Google Scholar
Schmitt AM, Anlauf M, Rousson V, Schmid S, Kofler A, Riniker F et al (2007) WHO 2004 criteria and CK19 are reliable prognostic markers in pancreatic endocrine tumors. Am J Surg Pathol 31(11):1677–1682. doi:10.1097/PAS.0b013e31805f675d, Epub 2007/12/07. PubMed PMID: 18059224
PubMed
Google Scholar
Fischer L, Kleeff J, Esposito I, Hinz U, Zimmermann A, Friess H et al (2008) Clinical outcome and long-term survival in 118 consecutive patients with neuroendocrine tumours of the pancreas. Br J Surg 95(5):627–635. doi:10.1002/bjs.6051, Epub 2008/02/29. PubMed PMID: 18306152
PubMed
CAS
Google Scholar
La Rosa S, Klersy C, Uccella S, Dainese L, Albarello L, Sonzogni A et al (2009) Improved histologic and clinicopathologic criteria for prognostic evaluation of pancreatic endocrine tumors. Hum Pathol 40(1):30–40. doi:10.1016/j.humpath.2008.06.005, Epub 2008/08/22. PubMed PMID: 18715612
PubMed
Google Scholar
Scarpa A, Mantovani W, Capelli P, Beghelli S, Boninsegna L, Bettini R et al (2010) Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol 23(6):824–833. doi:10.1038/modpathol.2010.58, Epub 2010/03/23. PubMed PMID: 20305616
PubMed
CAS
Google Scholar
Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A et al (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331(6021):1199–1203. doi:10.1126/science.1200609, Epub 2011/01/22. PubMed PMID: 21252315; PubMed Central PMCID: PMC3144496
PubMed
CAS
Google Scholar
Portela-Gomes GM, Grimelius L, Wilander E, Stridsberg M (2010) Granins and granin-related peptides in neuroendocrine tumours. Regul Pept 165(1):12–20. doi:10.1016/j.regpep.2010.02.011, Epub 2010/03/10. PubMed PMID: 20211659
PubMed
CAS
Google Scholar
Tomita T (2010) Cleaved caspase-3 immunocytochemical staining for pancreatic islets and pancreatic endocrine tumors: a potential marker for biological malignancy. Islets 2(2):82–88. doi:10.4161/isl.2.2.10807, Epub 2010/11/26. PubMed PMID: 21099299
PubMed
Google Scholar
Kajdaniuk D, Marek B, Foltyn W, Kos-Kudla B (2011) Vascular endothelial growth factor (VEGF)—part 2: in endocrinology and oncology. Endokrynol Pol 62(5):456–464, Epub 2011/11/10. PubMed PMID: 22069107
PubMed
CAS
Google Scholar
Soussi T, Beroud C (2001) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1(3):233–240. doi:10.1038/35106009, Epub 2002/03/21. PubMed PMID: 11902578
PubMed
CAS
Google Scholar
Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R et al (2012) Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol 36(2):173–184. doi:10.1097/PAS.0b013e3182417d36, Epub 2012/01/19. PubMed PMID: 22251937; PubMed Central PMCID: PMC3261427
PubMed
Google Scholar
Kebebew E, Peng M, Treseler PA, Clark OH, Duh QY, Ginzinger D et al (2004) Id1 gene expression is up-regulated in hyperplastic and neoplastic thyroid tissue and regulates growth and differentiation in thyroid cancer cells. J Clin Endocrinol Metab 89(12):6105–6111. doi:10.1210/jc.2004-1234, Epub 2004/12/08. PubMed PMID: 15579766
PubMed
CAS
Google Scholar
Perren A, Komminoth P, Saremaslani P, Matter C, Feurer S, Lees JA et al (2000) Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol 157(4):1097–1103. doi:10.1016/S0002-9440(10)64624-X, Epub 2000/10/06. PubMed PMID: 11021813; PubMed Central PMCID: PMC1850183
PubMed
CAS
Google Scholar
Krausch M, Raffel A, Anlauf M, Schott M, Willenberg H, Lehwald N et al (2011) Loss of PTEN expression in neuroendocrine pancreatic tumors. Horm Metab Res 43(12):865–871. doi:10.1055/s-0031-1291333, Epub 2011/11/23. PubMed PMID: 22105477
PubMed
CAS
Google Scholar
Wang L, Ignat A, Axiotis CA (2002) Differential expression of the PTEN tumor suppressor protein in fetal and adult neuroendocrine tissues and tumors: progressive loss of PTEN expression in poorly differentiated neuroendocrine neoplasms. Appl Immunohistochem Mol Morphol 10(2):139–146, Epub 2002/06/08. PubMed PMID: 12051632
PubMed
CAS
Google Scholar
O’Toole D, Couvelard A, Rebours V, Zappa M, Hentic O, Hammel P et al (2010) Molecular markers associated with response to chemotherapy in gastro-entero-pancreatic neuroendocrine tumors. Endocr Relat Cancer 17(4):847–856. doi:10.1677/ERC-09-0204, Epub 2010/06/24. PubMed PMID: 20570957
PubMed
Google Scholar
Orloff MS, Eng C (2008) Genetic and phenotypic heterogeneity in the PTEN hamartoma tumour syndrome. Oncogene 27(41):5387–5397. doi:10.1038/onc.2008.237, Epub 2008/09/17. PubMed PMID: 18794875
PubMed
CAS
Google Scholar
Ginn-Pease ME, Eng C (2003) Increased nuclear phosphatase and tensin homologue deleted on chromosome 10 is associated with G0-G1 in MCF-7 cells. Cancer Res 63(2):282–286, Epub 2003/01/25. PubMed PMID: 12543774
PubMed
CAS
Google Scholar
Planchon SM, Waite KA, Eng C (2008) The nuclear affairs of PTEN. J Cell Sci 121(Pt 3):249–253. doi:10.1242/jcs.022459, Epub 2008/01/25. PubMed PMID: 18216329
PubMed
CAS
Google Scholar
Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP et al (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128(1):157–170. doi:10.1016/j.cell.2006.11.042, Epub 2007/01/16. PubMed PMID: 17218262
PubMed
CAS
Google Scholar
Weng LP, Brown JL, Eng C (2001) PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum Mol Genet 10(6):599–604, Epub 2001/03/07. PubMed PMID: 11230179
PubMed
CAS
Google Scholar
Chung JH, Eng C (2005) Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis. Cancer Res 65(18):8096–8100. doi:10.1158/0008-5472.CAN-05-1888, Epub 2005/09/17. PubMed PMID: 16166282
PubMed
CAS
Google Scholar
Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, della Peruta M et al (2010) Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 28(2):245–255. doi:10.1200/JCO.2008.21.5988, Epub 2009/11/18. PubMed PMID: 19917848
PubMed
CAS
Google Scholar
Kucejova B, Pena-Llopis S, Yamasaki T, Sivanand S, Tran TA, Alexander S et al (2011) Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. Mol Cancer Res 9(9):1255–1265. doi:10.1158/1541-7786.MCR-11-0302, Epub 2011/07/30. PubMed PMID: 21798997; PubMed Central PMCID: PMC3234675
PubMed
CAS
Google Scholar
von Teichman A, Comperat E, Behnke S, Storz M, Moch H, Schraml P (2011) VHL mutations and dysregulation of pVHL- and PTEN-controlled pathways in multilocular cystic renal cell carcinoma. Mod Pathol 24(4):571–578. doi:10.1038/modpathol.2010.222, Epub 2010/12/15. PubMed PMID: 21151099
Google Scholar
Petrella BL, Brinckerhoff CE (2009) PTEN suppression of YY1 induces HIF-2 activity in von-Hippel-Lindau-null renal-cell carcinoma. Cancer Biol Ther 8(14):1389–1401, Epub 2009/06/02. PubMed PMID: 19483472; PubMed Central PMCID: PMC2761525
PubMed
CAS
Google Scholar
Rosner M, Hanneder M, Siegel N, Valli A, Fuchs C, Hengstschlager M (2008) The mTOR pathway and its role in human genetic diseases. Mutat Res 659(3):284–292. doi:10.1016/j.mrrev.2008.06.001, Epub 2008/07/05. PubMed PMID: 18598780
PubMed
CAS
Google Scholar
Ishov AM, Vladimirova OV, Maul GG (2004) Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci 117(Pt 17):3807–3820. doi:10.1242/jcs.01230jcs.01230, Epub 2004/07/15. PubMed PMID: 15252119
PubMed
CAS
Google Scholar
Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2(5):a000661. doi:10.1101/cshperspect.a000661, Epub 2010/05/11. PubMed PMID: 20452955; PubMed Central PMCID: PMC2857171
PubMed
Google Scholar
Salomoni P, Betts-Henderson J (2011) The role of PML in the nervous system. Mol Neurobiol 43(2):114–123. doi:10.1007/s12035-010-8156-y, Epub 2010/12/17. PubMed PMID: 21161613
PubMed
CAS
Google Scholar
Xue Y, Gibbons R, Yan Z, Yang D, McDowell TL, Sechi S et al (2003) The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci U S A 100(19):10635–10640. doi:10.1073/pnas.19376261001937626100, Epub 2003/09/04. PubMed PMID: 12953102; PubMed Central PMCID: PMC196856
PubMed
CAS
Google Scholar
Salomoni P, Khelifi AF (2006) Daxx: death or survival protein? Trends Cell Biol 16(2):97–104. doi:10.1016/j.tcb.2005.12.002, Epub 2006/01/13. PubMed PMID: 16406523
PubMed
CAS
Google Scholar
de Wilde RF, Edil BH, Hruban RH, Maitra A (2012) Well-differentiated pancreatic neuroendocrine tumors: from genetics to therapy. Nat Rev Gastroenterol Hepatol 9(4):199–208. doi:10.1038/nrgastro.2012.9, Epub 2012/02/09. PubMed PMID: 22310917
PubMed
Google Scholar
Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C et al (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333(6041):425. doi:10.1126/science.1207313, Epub 2011/07/02. PubMed PMID: 21719641; PubMed Central PMCID: PMC3174141
PubMed
CAS
Google Scholar
Kernohan KD, Jiang Y, Tremblay DC, Bonvissuto AC, Eubanks JH, Mann MR et al (2010) ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev Cell 18(2):191–202. doi:10.1016/j.devcel.2009.12.017, Epub 2010/02/18. PubMed PMID: 20159591
PubMed
CAS
Google Scholar
Iwase S, Xiang B, Ghosh S, Ren T, Lewis PW, Cochrane JC et al (2011) ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome. Nat Struct Mol Biol 18(7):769–776. doi:10.1038/nsmb.2062, Epub 2011/06/15. PubMed PMID: 21666679; PubMed Central PMCID: PMC3130887
PubMed
CAS
Google Scholar
Meehan RR, Stancheva I (2001) DNA methylation and control of gene expression in vertebrate development. Essays Biochem 37:59–70, Epub 2002/01/05. PubMed PMID: 11758457
PubMed
CAS
Google Scholar
Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6(1):24–35. doi:10.1038/nrg1500, Epub 2005/01/05. PubMed PMID: 15630419
PubMed
CAS
Google Scholar
Berube NG, Smeenk CA, Picketts DJ (2000) Cell cycle-dependent phosphorylation of the ATRX protein correlates with changes in nuclear matrix and chromatin association. Hum Mol Genet 9(4):539–547, Epub 2000/03/04. PubMed PMID: 10699177
PubMed
CAS
Google Scholar
Khelifi AF, D’Alcontres MS, Salomoni P (2005) Daxx is required for stress-induced cell death and JNK activation. Cell Death Differ 12(7):724–733. doi:10.1038/sj.cdd.4401559, Epub 2005/04/30. PubMed PMID: 15861194
PubMed
CAS
Google Scholar
Modlin IM, Gustafsson BI, Moss SF, Pavel M, Tsolakis AV, Kidd M (2010) Chromogranin A—biological function and clinical utility in neuro endocrine tumor disease. Ann Surg Oncol 17(9):2427–2443. doi:10.1245/s10434-010-1006-3, Epub 2010/03/11. PubMed PMID: 20217257
PubMed
Google Scholar
Scopsi L, Sampietro G, Boracchi P, Collini P (1998) Argyrophilia and chromogranin A and B immunostaining in patients with sporadic medullary thyroid carcinoma. A critical appraisal of their prognostic utility. J Pathol 184(4):414–419. doi:10.1002/(SICI)1096-9896(199804)184:4<414::AID-PATH1229>3.0.CO;2-U, Epub 1998/07/17. PubMed PMID: 9664908
PubMed
CAS
Google Scholar
Pruneri G, Galli S, Rossi RS, Roncalli M, Coggi G, Ferrari A et al (1998) Chromogranin A and B and secretogranin II in prostatic adenocarcinomas: neuroendocrine expression in patients untreated and treated with androgen deprivation therapy. Prostate 34(2):113–120. doi:10.1002/(SICI)1097-0045(19980201)34:2<113::AID-PROS5>3.0.CO;2-L, Epub 1998/02/18. PubMed PMID: 9465942
PubMed
CAS
Google Scholar
Schmid KW, Helpap B, Totsch M, Kirchmair R, Dockhorn-Dworniczak B, Bocker W et al (1994) Immunohistochemical localization of chromogranins A and B and secretogranin II in normal, hyperplastic and neoplastic prostate. Histopathology 24(3):233–239, Epub 1994/03/01. PubMed PMID: 7515371
PubMed
CAS
Google Scholar
Portela-Gomes GM, Stridsberg M, Grimelius L, Falkmer UG, Falkmer S (2004) Expression of chromogranins A, B, and C (secretogranin II) in human adrenal medulla and in benign and malignant pheochromocytomas. An immunohistochemical study with region-specific antibodies. APMIS 112(10):663–673. doi:10.1111/j.1600-0463.2004.t01-1-apm1121003.x, Epub 2004/12/17. PubMed PMID: 15601318
PubMed
CAS
Google Scholar
Portel-Gomes GM, Grimelius L, Johansson H, Wilander E, Stridsberg M (2001) Chromogranin A in human neuroendocrine tumors: an immunohistochemical study with region-specific antibodies. Am J Surg Pathol 25(10):1261–1267, Epub 2001/11/02. PubMed PMID: 11688460
PubMed
CAS
Google Scholar
Portela-Gomes GM, Stridsberg M (2001) Selective processing of chromogranin A in the different islet cells in human pancreas. J Histochem Cytochem 49(4):483–490, Epub 2001/03/22. PubMed PMID: 11259451
PubMed
CAS
Google Scholar
Montero-Hadjadje M, Vaingankar S, Elias S, Tostivint H, Mahata SK, Anouar Y (2008) Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 192(2):309–324. doi:10.1111/j.1748-1716.2007.01806.x, Epub 2007/11/17. PubMed PMID: 18005393
CAS
Google Scholar
Thrower EC, Choe CU, So SH, Jeon SH, Ehrlich BE, Yoo SH (2003) A functional interaction between chromogranin B and the inositol 1,4,5-trisphosphate receptor/Ca2+ channel. J Biol Chem 278(50):49699–49706. doi:10.1074/jbc.M309307200M309307200, Epub 2003/09/25. PubMed PMID: 14506248
PubMed
CAS
Google Scholar
Capiod T, Shuba Y, Skryma R, Prevarskaya N (2007) Calcium signalling and cancer cell growth. Subcell Biochem 45:405–427, Epub 2008/01/16. PubMed PMID: 18193646
PubMed
CAS
Google Scholar
Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15(2):164–171, Epub 2003/03/22. PubMed PMID: 12648672
PubMed
CAS
Google Scholar
Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303. doi:10.1038/387299a0
PubMed
CAS
Google Scholar
Shaulsky G, Goldfinger N, Ben-Ze’ev A, Rotter V (1990) Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 10(12):6565–6577, Epub 1990/12/01. PubMed PMID: 2247074; PubMed Central PMCID: PMC362933
PubMed
CAS
Google Scholar
Rotter V, Abutbul H, Ben-Ze’ev A (1983) P53 transformation-related protein accumulates in the nucleus of transformed fibroblasts in association with the chromatin and is found in the cytoplasm of non-transformed fibroblasts. EMBO J 2(7):1041–1047, Epub 1983/01/01. PubMed PMID: 6354706; PubMed Central PMCID: PMC555232
PubMed
CAS
Google Scholar
Gannon JV, Lane DP (1991) Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature 349(6312):802–806. doi:10.1038/349802a0, Epub 1991/02/28. PubMed PMID: 2000149
PubMed
CAS
Google Scholar
Roe JS, Youn HD (2006) The positive regulation of p53 by the tumor suppressor VHL. Cell Cycle 5(18)):2054–2056, Epub 2006/09/14. PubMed PMID: 16969113
PubMed
CAS
Google Scholar
Kawasaki T, Bilim V, Takahashi K, Tomita Y (1999) Infrequent alteration of p53 pathway in metastatic renal cell carcinoma. Oncol Rep 6(2):329–333, Epub 1999/02/19. PubMed PMID: 10022999
PubMed
CAS
Google Scholar
Lowe SW (1995) Cancer therapy and p53. Curr Opin Oncol 7(6):547–553, Epub 1995/11/01. PubMed PMID: 8547404
PubMed
CAS
Google Scholar
Midgley CA, Fisher CJ, Bartek J, Vojtesek B, Lane D, Barnes DM (1992) Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in Escherichia coli. J Cell Sci 101(Pt 1):183–189, Epub 1992/01/01. PubMed PMID: 1569122
PubMed
CAS
Google Scholar
Moll UM, Riou G, Levine AJ (1992) Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A 89(15):7262–7266, Epub 1992/08/01. PubMed PMID: 1353891; PubMed Central PMCID: PMC49686
PubMed
CAS
Google Scholar
Iggo R, Gatter K, Bartek J, Lane D, Harris AL (1990) Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335(8691):675–679, Epub 1990/03/24. PubMed PMID: 1969059
PubMed
CAS
Google Scholar
Blansfield JA, Choyke L, Morita SY, Choyke PL, Pingpank JF, Alexander HR et al (2007) Clinical, genetic and radiographic analysis of 108 patients with von Hippel-Lindau disease (VHL) manifested by pancreatic neuroendocrine neoplasms (PNETs). Surgery 142(6):814–818. doi:10.1016/j.surg.2007.09.012, discussion 8 e1-2. Epub 2007/12/08. PubMed PMID: 18063061
PubMed
Google Scholar
Yu DS, Hsieh DS, Chang SY (2003) Modulation of prostate carcinoma cell growth and apoptosis by chromogranin A. J Urol 170(5):2031–2035. doi:10.1097/01.ju.0000091807.02246.f3, Epub 2003/10/09. PubMed PMID: 14532847
PubMed
CAS
Google Scholar