Experienced Meditators Exhibit No Differences to Demographically Matched Controls in Theta Phase Synchronization, P200, or P300 During an Auditory Oddball Task

Abstract

Objectives

Long-term meditation practice affects the brain’s ability to sustain attention. However, how this occurs is not well understood. Electroencephalography (EEG) studies have found that during dichotic oddball listening tasks, experienced meditators displayed altered attention-related neural markers including theta phase synchronization (TPS) and event-related potentials (ERP; P200 and P300) to target tones while meditating compared to resting, and compared to non-meditators after intensive meditation interventions. Research is yet to establish whether the changes in the aforementioned neural markers are trait changes which may be observable in meditators irrespective of practice setting.

Methods

The present study expanded on previous research by comparing EEG measures from a dichotic oddball task in a sample of community-based mindfulness meditators (n = 22) to healthy controls with no meditation experience (n = 22). To minimize state effects, neither group practiced meditation during/immediately prior to the EEG session.

Results

No group differences were observed in behavioural performance or either the global amplitude or distribution of theta phase synchronization, P200 or P300. Bayes factor analysis suggested evidence against group differences for the P200 and P300.

Conclusions

The results suggest that increased P200, P300, and TPS do not reflect trait-related changes in a community sample of mindfulness meditators. The present study used a larger sample size than previous research and power analyses suggested the study was sufficiently powered to detect differences. These results add nuance to our understanding of which processes are affected by meditation and the amount of meditation required to generate differences in specific neural processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

Participant self-report, behavioural, and EEG data are available at the Open Science Framework (https://doi.org/10.7910/DVN/APHLM1).

References

  1. Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett, 310(1), 57–60.

    PubMed  Google Scholar 

  2. Allen, M., Dietz, M., Blair, K. S., van Beek, M., Rees, G., Vestergaard-Poulsen, P., & Roepstorff, A. (2012). Cognitive-affective neural plasticity following active-controlled mindfulness intervention. J Neurosci, 32(44), 15601.

    PubMed  PubMed Central  Google Scholar 

  3. Andreu, C. I., Moënne-Loccoz, C., López, V., Slagter, H. A., Franken, I. H., & Cosmelli, D. (2017). Behavioral and electrophysiological evidence of enhanced performance monitoring in meditators. Mindfulness, 8(6), 1603–1614.

    Google Scholar 

  4. Arns, M., Jongsma, M., & Kessels, R. (2014). P300 development across the lifespan: a systematic review and meta-analysis. PLoS One, 9(2), e87347.

    PubMed  PubMed Central  Google Scholar 

  5. Aschersleben, G. (2002). Temporal control of movements in sensorimotor synchronization. Brain Cogn, 48(1), 66–79.

    PubMed  Google Scholar 

  6. Atchley, R., Klee, D., Memmott, T., Goodrich, E., Wahbeh, H., & Oken, B. (2016). Event-related potential correlates of mindfulness meditation competence. Neuroscience, 320, 83–92.

    PubMed  PubMed Central  Google Scholar 

  7. Badart, P., McDowall, J., & Prime, S. (2018). Multimodal sustained attention superiority in concentrative meditators compared to nonmeditators. Mindfulness, 9(3), 824–835.

    Google Scholar 

  8. Baer, R. A., Smith, G. T., Hopkins, J., Krietemeyer, J., & Toney, L. (2006). Using self-report assessment methods to explore facets of mindfulness. Assessment, 13(1), 27–45.

    PubMed  PubMed Central  Google Scholar 

  9. Baijal, S., & Srinivasan, N. (2010). Theta activity and meditative states: spectral changes during concentrative meditation. Int Q Cogn Sci, 11(1), 31–38.

    Google Scholar 

  10. Bailey, N., Freedman, G., Raj, K., Sullivan, C., Rogasch, N., Chung, S. W., & Fitzgerald, P. (2018). Mindfulness meditators show altered distributions of early and late neural activity markers of attention in a response inhibition task. bioRxiv, 396259.

  11. Bailey, N. W., Raj, K., Freedman, G., Fitzgibbon, B., Rogasch, N. C., Van Dam, N., & Fitzgerald, P. (2019). Mindfulness meditators do not show differences in electrophysiological measures of error processing. Mindfulness, 10(2), 1–21.

  12. Barron, E., Riby, L. M., Greer, J., & Smallwood, J. (2011). Absorbed in thought: the effect of mind wandering on the processing of relevant and irrelevant events. Psychol Sci, 22(5), 596–601.

    PubMed  Google Scholar 

  13. Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck Depression Inventory-II. San Antonio, 78(2), 490–498.

    Google Scholar 

  14. Biedermann, B., de Lissa, P., Mahajan, Y., Polito, V., Badcock, N., Connors, M. H., et al. (2016). Meditation and auditory attention: an ERP study of meditators and non-meditators. Int J Psychophysiol, 109(C), 63–70.

    PubMed  Google Scholar 

  15. Brefczynski-Lewis, J. A., Lutz, A., Schaefer, H. S., Levinson, D. B., & Davidson, R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proceedings of the National Academy of Sciences of the United States, 104(27), 11483.

    Google Scholar 

  16. Britton, W. B., Davis, J. H., Loucks, E. B., Peterson, B., Cullen, B. H., Reuter, L., & Lindahl, J. R. (2018). Dismantling mindfulness-based cognitive therapy: creation and validation of 8-week focused attention and open monitoring interventions within a 3-armed randomized controlled trial. Behav Res Ther, 101, 92–107.

    PubMed  Google Scholar 

  17. Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol Bull, 132(2), 180–211.

    PubMed  Google Scholar 

  18. Cahn, B. R., & Polich, J. (2009). Meditation (Vipassana) and the P3a event-related brain potential. Int J Psychophysiol, 72(1), 51–60.

    PubMed  Google Scholar 

  19. Cahn, B. R., Delorme, A., & Polich, J. (2013). Event-related delta, theta, alpha and gamma correlates to auditory oddball processing during Vipassana meditation. Soc Cogn Affect Neurosci, 8(1), 100–111.

    PubMed  Google Scholar 

  20. Cardeña, E., Sjöstedt, J., & Marcusson-Clavertz, D. (2015). Sustained attention and motivation in Zen meditators and non-meditators. Mindfulness, 6(5), 1082–1087.

    Google Scholar 

  21. Chambers, R., Gullone, E., & Allen, N. B. (2009). Mindful emotion regulation: an integrative review. Clin Psychol Rev, 29(6), 560–572.

    PubMed  Google Scholar 

  22. Choi, J. W., Cha, K. S., Choi, J. D., Jung, K.-Y., & Kim, K. H. (2015). Difficulty-related changes in inter-regional neural synchrony are dissociated between target and non-target processing. Brain Res, 1603(C), 114–123.

    PubMed  Google Scholar 

  23. Davidson, R. (2005). Meditation and neuroplasticity: training your brain. Explore: The Journal of Science and Healing, 1(5), 380–388.

    Google Scholar 

  24. Delgado-Pastor, L. C., Perakakis, P., Subramanya, P., Telles, S., & Vila, J. (2013). Mindfulness (Vipassana) meditation: effects on P3b event-related potential and heart rate variability. Int J Psychophysiol, 90(2), 207–214.

    PubMed  Google Scholar 

  25. Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods, 134(1), 9–21.

    PubMed  Google Scholar 

  26. Dimidjian, S., & Segal, Z. V. (2015). Prospects for a clinical science of mindfulness-based intervention. American Psychologist, 70(7), 593–620. https://doi.org/10.1037/a0039589.

    PubMed  Google Scholar 

  27. Faul, F., Erdfelder, E., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39(2), 175–191.

    Google Scholar 

  28. Godfrin, K. A., & van Heeringen, C. (2010). The effects of mindfulness-based cognitive therapy on recurrence of depressive episodes, mental health and quality of life: a randomized controlled study. Behav Res Ther, 48(8), 738–746.

    PubMed  Google Scholar 

  29. Goleman, D., & Davidson, R. (2017). Altered traits: science reveals how meditation changes your mind, brain, and body. New York: New York. Penguin.

    Google Scholar 

  30. Goyal, M., Singh, S., Sibinga, E. S., et al. (2014). Meditation programs for psychological stress and well-being: a systematic review and meta-analysis. JAMA Intern Med, 174(3), 357–368.

    PubMed  PubMed Central  Google Scholar 

  31. Grant, J. A., Courtemanche, J., Duerden, E. G., Duncan, G. H., & Rainville, P. (2010). Cortical thickness and pain sensitivity in Zen meditators. Emotion (Washington, D.C.), 10(1), 43.

    Google Scholar 

  32. Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95–112.

    Google Scholar 

  33. Grossman, P., & Van Dam, N. T. (2011). Mindfulness, by any other name…: trials and tribulations of sati in western psychology and science. Contemporary Buddhism, 12(1), 219–239.

    Google Scholar 

  34. Gu, J., Strauss, C., Bond, R., & Cavanagh, K. (2015). How do mindfulness-based cognitive therapy and mindfulness-based stress reduction improve mental health and wellbeing? A systematic review and meta-analysis of mediation studies. Clin Psychol Rev, 37, 1–12.

    PubMed  Google Scholar 

  35. Habermann, M., Weusmann, D., Stein, M., & Koenig, T. (2018). A student’s guide to randomization statistics for multichannel event-related potentials using Ragu. Frontiers in Neuroscience, 12.

  36. Hanslmayr, S., Pastötter, B., Bäuml, K.-H., Gruber, S., Wimber, M., & Klimesch, W. (2008). The electrophysiological dynamics of interference during the Stroop task. J Cogn Neurosci, 20(2), 215–225.

    PubMed  Google Scholar 

  37. Hasenkamp, W., & Barsalou, L. W. (2012). Effects of meditation experience on functional connectivity of distributed brain networks. Front Hum Neurosci, 6(2012), 1–14.

    Google Scholar 

  38. Hergueta, T., Baker, R., & Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IVand ICD-10. J Clin Psychiatry, 59(20), 2233.

    Google Scholar 

  39. Hodgins, H. S., & Adair, K. C. (2010). Attentional processes and meditation. Conscious Cogn, 19(4), 872–878.

    PubMed  Google Scholar 

  40. Hölzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011). How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspect Psychol Sci, 6(6), 537–559.

    PubMed  Google Scholar 

  41. JASP Team (2019). JASP (Version 0.11.1) [Computer software].

  42. Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford: Clarendon Press.

    Google Scholar 

  43. Jha, A. P., Krompinger, J., & Baime, M. J. (2007). Mindfulness training modifies subsystems of attention. Cogn Affect Behav Neurosci, 7(2), 109–119.

    PubMed  Google Scholar 

  44. Jo, H.-G., Schmidt, S., Inacker, E., Markowiak, M., & Hinterberger, T. (2016). Meditation and attention: a controlled study on long-term meditators in behavioral performance and event-related potentials of attentional control. Int J Psychophysiol, 99, 33–39.

    PubMed  Google Scholar 

  45. Jongsma, M. L. A., Eichele, T., Quiroga, R. Q., Jenks, K. M., Desain, P., Honing, H., & Van Rijn, C. M. (2005). Expectancy effects on omission evoked potentials in musicians and non-musicians. Psychophysiology, 42(2), 191–201.

    PubMed  Google Scholar 

  46. Josefsson, T., & Broberg, A. (2011). Meditators and non-meditators on sustained and executive attentional performance. Ment Health Relig Cult, 14(3), 291–309.

    Google Scholar 

  47. Kabat-Zinn, J. (1994). Wherever you go. There you are: mindfulness meditation in everyday life. New York: Hyperion.

    Google Scholar 

  48. Kahana, M. J., Seelig, D., & Madsen, J. R. (2001). Theta returns. Curr Opin Neurobiol, 11(6), 739–744.

    PubMed  Google Scholar 

  49. Kawasaki, M., Kitajo, K., & Yamaguchi, Y. (2014). Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory. Front Psychol, 5, 200.

    PubMed  PubMed Central  Google Scholar 

  50. Keng, S.-L., Smoski, M. J., & Robins, C. J. (2011). Effects of mindfulness on psychological health: a review of empirical studies. Clin Psychol Rev, 31(6), 1041–1056.

    PubMed  PubMed Central  Google Scholar 

  51. Klimesch, W., Doppelmayr, M., Schimke, H., & Ripper, B. (1997). Theta synchronization and alpha desynchronization in a memory task. Psychophysiology, 34(2), 169–176.

    PubMed  Google Scholar 

  52. Klimesch, W., Sauseng, P., Hanslmayr, S., Gruber, W., & Freunberger, R. (2007). Event-related phase reorganization may explain evoked neural dynamics. Neurosci Biobehav Rev, 31(7), 1003–1016.

    PubMed  Google Scholar 

  53. Koenig, T., & Melie-garcía, L. (2010). A method to determine the presence of averaged event-related fields using randomization tests. Brain Topogr, 23(3), 233–242.

    PubMed  Google Scholar 

  54. Koenig, T., Kottlow, M., Stein, M., & Melie-García, L. (2011). Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Computational Intelligence and Neuroscience, 2011(2011), 14.

    Google Scholar 

  55. Lachaux, J., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8(4), 194–208. https://doi.org/10.1002/(SICI)1097-0193.

  56. Lakey, C. E., Berry, D. R., & Sellers, E. W. (2011). Manipulating attention via mindfulness induction improves p300-based braincomputer interface performance. J Neural Eng, 8(2), 025019.

    PubMed  PubMed Central  Google Scholar 

  57. Lea, J., Cadman, L., & Philo, C. (2015). Changing the habits of a lifetime? Mindfulness meditation and habitual geographies. Cult Geogr, 22(1), 49–65.

    Google Scholar 

  58. Lee, G.-T., Lee, C., Kim, K. H., & Jung, K.-Y. (2014). Regional and inter-regional theta oscillation during episodic novelty processing. Brain Cogn, 90, 70–75.

    PubMed  Google Scholar 

  59. Light, G. A., Williams, L. E., Minow, F., Sprock, J., Rissling, A., Sharp, R., & Braff, D. L. (2010). Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Current Protocols in Neuroscience, 6(52), Unit 6.25.21.

  60. Lindholm, E., & Koriath, J. J. (1985). Analysis of multiple event related potential components in a tone discrimination task. International journal of psychophysiology : official journal of the International Organization of Psychophysiology, 3(2), 121.

    Google Scholar 

  61. Lutz, A., Slagter, H. A., Dunne, J. D., & Davidson, R. J. (2008). Attention regulation and monitoring in meditation. Trends Cogn Sci, 12(4), 163–169.

    PubMed  PubMed Central  Google Scholar 

  62. Lutz, A., Slagter, H. A., Rawlings, N. B., Francis, D. A., Greischar, L. L., & Davidson, J. D. (2009). Mental training enhances attentional stability: neural and behavioral evidence. J Neurosci, 29(42), 13418–13427.

    PubMed  PubMed Central  Google Scholar 

  63. Ma, S. H., & Teasdale, J. D. (2004). Mindfulness-based cognitive therapy for depression: replication and exploration of differential relapse prevention effects. J Consult Clin Psychol, 72(1), 31.

    PubMed  Google Scholar 

  64. Mertens, R., & Polich, J. (1997). P300 from a single-stimulus paradigm: passive versus active tasks and stimulus modality. Electroencephalogr Clin Neurophysiol, 104(6), 488.

    PubMed  Google Scholar 

  65. Miller, J. J., Fletcher, K., & Kabat-Zinn, J. (1995). Three-year follow-up and clinical implications of a mindfulness meditation-based stress reduction intervention in the treatment of anxiety disorders. Gen Hosp Psychiatry, 17(3), 192–200.

    PubMed  Google Scholar 

  66. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011(2011), 9.

    Google Scholar 

  67. Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol, 118(10), 2128–2148.

    PubMed  PubMed Central  Google Scholar 

  68. Rouder, J. N., Morey, R. D., Verhagen, J., Swagman, A. R., & Wagenmakers, E.-J. (2017). Bayesian analysis of factorial designs. Psychol Methods, 22(2), 304–321.

    PubMed  Google Scholar 

  69. Richter, P., Werner, J., Heerlein, A., Kraus, A., & Sauer, H. (1998). On the validity of the Beck Depression Inventory. Psychopathology, 31(3), 160–168. https://doi.org/10.1159/000066239.

    PubMed  Google Scholar 

  70. Sarang, S. P., & Telles, S. (2006). Changes in P300 following two yoga-based relaxation techniques. Int J Neurosci, 116(12), 1419–1430.

    PubMed  Google Scholar 

  71. Schmertz, S., Anderson, P., & Robins, D. (2009). The relation between self-report mindfulness and performance on tasks of sustained attention. J Psychopathol Behav Assess, 31(1), 60–66.

    Google Scholar 

  72. Schoenberg, P. L., & Vago, D. R. (2019). Mapping meditative states and stages with electrophysiology: concepts, classifications, and methods. Curr Opin Psychol, 28, 211–217.

    PubMed  Google Scholar 

  73. Schoenberg, P. L., Hepark, S., Kan, C., Barendregt, H. P., Buitelaar, J. K., & Speckens, A. (2013). Effects of mindfulness-based cognitive therapy on neurophysiological correlates of performance monitoring in adult attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 125(7), 1407–1416. https://doi.org/10.1016/j.clinph.2013.11.031.

    PubMed  Google Scholar 

  74. Simões, C., Jensen, O., Parkkonen, L., & Hari, R. (2003). Phase locking between human primary and secondary somatosensory cortices. Proc Natl Acad Sci U S A, 100(5), 2691–2694. https://doi.org/10.1073/pnas.0437944100.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J. M., & Davidson, R. J. (2007). Mental training affects distribution of limited brain resources. PLoS Biol, 5(6), e138.

    PubMed  PubMed Central  Google Scholar 

  76. Slagter, H. A., Lutz, A., Greischar, L. L., Nieuwenhuis, S., & Davidson, R. J. (2009). Theta phase synchrony and conscious target perception: impact of intensive mental training. J Cogn Neurosci, 21(8), 1536–1549.

    PubMed  PubMed Central  Google Scholar 

  77. Steer, R. A., & Beck, A. T. (1997). Beck Anxiety Inventory.

  78. Tang, Y. Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews. Neuroscience, 16(4), 213–225.

    PubMed  Google Scholar 

  79. Taylor, V. A., Grant, J., Daneault, V., Scavone, G., Breton, E., Roffe-Vidal, S., & Beauregard, M. (2011). Impact of mindfulness on the neural responses to emotional pictures in experienced and beginner meditators. NeuroImage, 57(4), 1524–1533.

    PubMed  Google Scholar 

  80. Thomas, J. W., & Cohen, M. (2014). A methodological review of meditation research. Frontiers in Psychiatry, 5, 74–74.

    PubMed  PubMed Central  Google Scholar 

  81. Tomasino, B., & Fabbro, F. (2016). Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation. Brain Cogn, 102, 46–54.

    PubMed  Google Scholar 

  82. Tomasino, B., Fregona, S., Skrap, M., & Fabbro, F. (2012). Meditation-related activations are modulated by the practices needed to obtain it and by the expertise: an ALE meta-analysis study. Front Hum Neurosci, 6, 346.

    PubMed  Google Scholar 

  83. Ueno, T., Hirano, S., Hirano, Y., Kanba, S., Kobayashi, S., & Onitsuka, T. (2009). Locked to stimulation: Significance level of the phase-locking factor. 2nd International Congress on Image and Signal Processing, 1–4. https://doi.org/10.1109/CISP.2009.5304010.

  84. Van Dam, N. T., van Vugt, M. K., Vago, D. R., Schmalzl, L., Saron, C. D., Olendzki, A., & Meyer, D. E. (2018). Mind the hype: a critical evaluation and prescriptive agenda for research on mindfulness and meditation. Perspect Psychol Sci, 13(1), 36–61.

    PubMed  Google Scholar 

  85. Varela, F., Lachaux, J., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239. https://doi.org/10.1038/35067550.

    PubMed  Google Scholar 

Download references

Funding

The study was funded by an Alfred Research Trust Small Grant Scheme (T11801). PBF is supported by a National Health and Medical Research Council of Australia Practitioner Fellowship (6069070).

Author information

Affiliations

Authors

Contributions

JRP performed the data collection and data analysis, and wrote the paper. HG performed data collection. OB performed data collection and assisted with editing the final manuscript. BF, ME, ATH, NVD, GH, and PBF had input into study design, supported data collection or analysis, and had intellectual input and editing input into the final manuscript. NWB designed and oversaw the study and provided technical expertise and training in data analysis as well as with writing the paper.

Corresponding author

Correspondence to Jake Robert Payne.

Ethics declarations

Ethical Approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of both The Alfred Hospital and Monash University ethical research committee and with the 1964 Helsinki declaration and its later amendments.

Conflict of Interest

PBF has received equipment for research from MagVenture A/S, Medtronic Ltd., Cervel Neurotech, and Brainsway Ltd. and funding for research from Neuronetics and Cervel Neurotech. PBF is on the scientific advisory board for Bionomics Ltd. The other authors declare that they have no conflicts of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 381 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Payne, J.R., Baell, O., Geddes, H. et al. Experienced Meditators Exhibit No Differences to Demographically Matched Controls in Theta Phase Synchronization, P200, or P300 During an Auditory Oddball Task. Mindfulness 11, 643–659 (2020). https://doi.org/10.1007/s12671-019-01287-4

Download citation

Keywords

  • Mindfulness meditation
  • Electroencephalography
  • EEG
  • P300
  • P200
  • Oddball
  • Theta phase synchronization
  • Attention