Advertisement

Mindfulness

pp 1–8 | Cite as

Plastic Changes in the White Matter Induced by Templestay, a 4-Day Intensive Mindfulness Meditation Program

  • Youngwoo Bryan Yoon
  • Dahye Bae
  • Seoyeon Kwak
  • Wu Jeong Hwang
  • Kang Ik K. Cho
  • Kyung-Ok Lim
  • Hye Yoon Park
  • Tae Young Lee
  • Sung Nyun Kim
  • Jun Soo KwonEmail author
ORIGINAL PAPER
  • 42 Downloads

Abstract

Objectives

Further explorations are needed to determine how behavioral-lifestyle changes of various types influence neural plasticity in the white matter (WM); in particular, little is known about the influence of one’s self-discipline on changes in WM. A retreat program called Templestay follows the self-discipline practices used by Buddhist monks for 3 nights and 4 days; this program mainly involves meditation and other forms of behavioral-lifestyle modifications. In this study, we explored how neural plasticity occurs in WM structures in response to a relatively short retreat program.

Methods

We designed a longitudinal study that investigates WM neural plasticity over the course of Templestay. The Templestay group experienced the daily life of Buddhist practitioners, whereas the control group only participated in a retreat program at the same temple. Diffusion tensor imaging data were acquired before and after the Templestay program to investigate neural plasticity in the WM. We examined changes in the fractional anisotropy maps.

Results

We observed significant changes in the fractional anisotropy maps at the left superior longitudinal fasciculus, left posterior corona radiata, and splenium of the corpus callosum after 4 days of Templestay. Based on the results of our study, a 4-day meditation period in combination with behavioral-lifestyle modifications facilitates WM myelination in regions important for cognitive functions.

Conclusions

These results provide evidence of very rapid structural remodeling of the WM, suggesting that activity-dependent changes in myelination are induced by Templestay, a relatively understudied self-discipline program that includes behavioral-lifestyle modifications.

Keywords

Mindfulness training Meditation Neural plasticity Templestay Diffusion tensor imaging Fractional anisotropy 

Notes

Data Availability Statement

All data are available at the Open Science Framework (https://osf.io/2x5wg/).

Author Contributions

YBY and DB: analyzed the data and wrote the manuscript. SK, WJH, and KKC: acquired the MRI data. TYL and SNK: collaborated in recruitment and study procedures. KYL and HYP: participated in theoretical development. JSK: collaborated in the writing and editing of the final manuscript. YBY and DB contributed equally to this work. All authors approved the final version of the manuscript for submission.

Funding

This study was supported by the Brain Research Program through the National Research Foundation of Korea, funded by the Ministry of Science, ICT and Future Planning (Grant No. 2017M3C7A1029610; Grant No. 2016R1E1A1A02921618).

Compliance with Ethical Standards

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The present study was approved by the Institutional Review Board of Seoul National University Hospital.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12671_2019_1199_MOESM1_ESM.pdf (82 kb)
ESM 1 (PDF 81 kb)

References

  1. Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance - Series B, 111(3), 209–219.CrossRefPubMedGoogle Scholar
  2. Bloss, E. B., Janssen, W. G., Ohm, D. T., Yuk, F. J., Wadsworth, S., Saardi, K. M., et al. (2011). Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex. The Journal of Neuroscience, 31(21), 7831–7839.  https://doi.org/10.1523/JNEUROSCI.0839-11.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Borod, J. C. (1992). Interhemispheric and intrahemispheric control of emotion: a focus on unilateral brain damage. Journal of Consulting and Clinical Psychology, 60(3), 339–348.CrossRefPubMedGoogle Scholar
  4. Butler, A. C., Chapman, J. E., Forman, E. M., & Beck, A. T. (2006). The empirical status of cognitive-behavioral therapy: a review of meta-analyses. Clinical Psychology Review, 26(1), 17–31.CrossRefPubMedGoogle Scholar
  5. Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132(2), 180–211.  https://doi.org/10.1037/0033-2909.132.2.180.CrossRefGoogle Scholar
  6. Caroni, P., Chowdhury, A., & Lahr, M. (2014). Synapse rearrangements upon learning: from divergent–sparse connectivity to dedicated sub-circuits. Trends in Neurosciences, 37(10), 604–614.CrossRefPubMedGoogle Scholar
  7. Chetelat, G., Mezenge, F., Tomadesso, C., Landeau, B., Arenaza-Urquijo, E., Rauchs, G., et al. (2017). Reduced age-associated brain changes in expert meditators: a multimodal neuroimaging pilot study. Scientific Reports, 7(1), 10160.  https://doi.org/10.1038/s41598-017-07764-x.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cho, K. I., Shenton, M. E., Kubicki, M., Jung, W. H., Lee, T. Y., Yun, J. Y., et al. (2016). Altered thalamo-cortical white matter connectivity: probabilistic tractography study in clinical-high risk for psychosis and first-episode psychosis. Schizophrenia Bulletin, 42(3), 723–731.  https://doi.org/10.1093/schbul/sbv169.CrossRefPubMedGoogle Scholar
  9. Cho, K. I. K., Kim, M., Yoon, Y. B., Lee, J., Lee, T. Y., & Kwon, J. S. (2019). Disturbed thalamocortical connectivity in unaffected relatives of schizophrenia patients with a high genetic loading. Australian and New Zealand Journal of Psychiatry, 6, 4867418824020.  https://doi.org/10.1177/0004867418824020.CrossRefGoogle Scholar
  10. Chourbaji, S., Brandwein, C., & Gass, P. (2011). Altering BDNF expression by genetics and/or environment: impact for emotional and depression-like behaviour in laboratory mice. Neuroscience and Biobehavioral Reviews, 35(3), 599–611.  https://doi.org/10.1016/j.neubiorev.2010.07.003.CrossRefPubMedGoogle Scholar
  11. Chung, M. K., Dalton, K. M., Alexander, A. L., & Davidson, R. J. (2004). Less white matter concentration in autism: 2D voxel-based morphometry. Neuroimage, 23(1), 242–251.CrossRefPubMedGoogle Scholar
  12. Cotier, F. A., Zhang, R., & Lee, T. M. (2017). A longitudinal study of the effect of short-term meditation training on functional network organization of the aging brain. Scientific Reports, 7(1), 598.  https://doi.org/10.1038/s41598-017-00678-8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Driemeyer, J., Boyke, J., Gaser, C., Büchel, C., & May, A. (2008). Changes in gray matter induced by learning—revisited. PLoS One, 3(7), e2669.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Driessen, E., & Hollon, S. D. (2010). Cognitive behavioral therapy for mood disorders: efficacy, moderators and mediators. Psychiatric Clinics of North America, 33(3), 537–555.CrossRefPubMedGoogle Scholar
  15. Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, O., Larsen, V. A., et al. (2012). Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Human Brain Mapping, 33(10), 2390–2406.  https://doi.org/10.1002/hbm.21370.CrossRefPubMedGoogle Scholar
  16. Fields, D. R. (2015). A new mechanism of nervous system plasticity: activity-dependent myelination. Nature Reviews. Neuroscience, 16(12), 756–767.  https://doi.org/10.1038/nrn4023.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fox, K., Nijeboer, S., Dixon, M. L., Floman, J. L., Ellamil, M., Rumak, S. P., et al. (2014). Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neuroscience and Biobehavioral Reviews, 43, 48–73.  https://doi.org/10.1016/j.neubiorev.2014.03.016.CrossRefPubMedGoogle Scholar
  18. Herrington, J. D., Heller, W., Mohanty, A., Engels, A. S., Banich, M. T., Webb, A. G., et al. (2010). Localization of asymmetric brain function in emotion and depression. Psychophysiology, 47(3), 442–454.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited--comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage, 32(3), 989–994.  https://doi.org/10.1016/j.neuroimage.2006.05.044.CrossRefPubMedGoogle Scholar
  20. Hofstetter, S., Tavor, I., Tzur Moryosef, S., & Assaf, Y. (2013). Short-term learning induces white matter plasticity in the fornix. The Journal of Neuroscience, 33(31), 12844–12850.  https://doi.org/10.1523/JNEUROSCI.4520-12.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hwang, W. J., Lee, T. Y., Lim, K. O., Bae, D., Kwak, S., Park, H. Y., et al. (2018). The effects of four days of intensive mindfulness meditation training (Templestay program) on resilience to stress: a randomized controlled trial. Psychology, Health & Medicine, 23(5), 497-504.  https://doi.org/10.1080/13548506.2017.1363400.
  22. Juraska, J. M., & Kopcik, J. R. (1988). Sex and environmental influences on the size and ultrastructure of the rat corpus callosum. Brain Research, 450(1-2), 1–8.CrossRefPubMedGoogle Scholar
  23. Kang, D.-H., Jo, H. J., Jung, W. H., Kim, S. H., Jung, Y.-H., Choi, C.-H., et al. (2013). The effect of meditation on brain structure: cortical thickness mapping and diffusion tensor imaging. Social Cognitive and Affective Neuroscience, 8(1), 27–33.  https://doi.org/10.1093/scan/nss056.CrossRefPubMedGoogle Scholar
  24. Karlsgodt, K. H., van Erp, T. G., Poldrack, R. A., Bearden, C. E., Nuechterlein, K. H., & Cannon, T. D. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry, 63(5), 512–518.CrossRefPubMedGoogle Scholar
  25. Klimecki, O. M., Leiberg, S., Lamm, C., & Singer, T. (2013). Functional neural plasticity and associated changes in positive affect after compassion training. Cerebral Cortex, 23(7), 1552–1561.  https://doi.org/10.1093/cercor/bhs142.CrossRefPubMedGoogle Scholar
  26. Kucyi, A., Hodaie, M., & Davis, K. D. (2012). Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience-and attention-related brain networks. Journal of Neurophysiology, 108(12), 3382–3392.CrossRefPubMedGoogle Scholar
  27. Kyeong, S., Kim, J., Kim, D. J., Kim, H. E., & Kim, J.-J. (2017). Effects of gratitude meditation on neural network functional connectivity and brain-heart coupling. Scientific Reports, 7(1), 5058.  https://doi.org/10.1038/s41598-017-05520-9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lazar, S. W., Kerr, C. E., Wasserman, R. H., Gray, J. R., Greve, D. N., Treadway, M. T., et al. (2005). Meditation experience is associated with increased cortical thickness. Neuroreport, 16(17), 1893–1897.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lehéricy, S., Ducros, M., De Moortele, V., Francois, C., Thivard, L., Poupon, C., et al. (2004). Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Annals of Neurology, 55(4), 522–529.CrossRefPubMedGoogle Scholar
  30. Lundgaard, I., Luzhynskaya, A., Stockley, J. H., Wang, Z., Evans, K. A., Swire, M., et al. (2013). Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biology, 11(12), e1001743.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lutz, A., McFarlin, D. R., Perlman, D. M., Salomons, T. V., & Davidson, R. J. (2013). Altered anterior insula activation during anticipation and experience of painful stimuli in expert meditators. Neuroimage, 64, 538–546.  https://doi.org/10.1016/j.neuroimage.2012.09.030.CrossRefPubMedGoogle Scholar
  32. Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness, V. S., Jr., et al. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15(6), 854–869.  https://doi.org/10.1093/cercor/bhh186.CrossRefPubMedGoogle Scholar
  33. Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: the default network and stimulus-independent thought. Science, 315(5810), 393–395.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mori, S., Wakana, S., Van Zijl, P. C., & Nagae-Poetscher, L. (2005). MRI atlas of human white matter. Amsterdam: ElsevierGoogle Scholar
  35. Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16(7), 1227–1233.  https://doi.org/10.1162/0898929041920441.CrossRefPubMedGoogle Scholar
  36. Oertel-Knochel, V., Knochel, C., Stablein, M., & Linden, D. (2012). Abnormal functional and structural asymmetry as biomarker for schizophrenia. Current Topics in Medicinal Chemistry, 12(21), 2434–2451.CrossRefPubMedGoogle Scholar
  37. Ota, M., Obata, T., Akine, Y., Ito, H., Ikehira, H., Asada, T., et al. (2006). Age-related degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage, 31(4), 1445–1452.  https://doi.org/10.1016/j.neuroimage.2006.02.008.CrossRefPubMedGoogle Scholar
  38. Russo-Neustadt, A. (2003)Brain-derived neurotrophic factor, behavior, and new directions for the treatment of mental disorders. In Seminars in Clinical Neuropsychiatry, (Vol. 8, pp. 109-118, Vol. 2)Google Scholar
  39. Sack, A. T., Camprodon, J. A., Pascual-Leone, A., & Goebel, R. (2005). The dynamics of interhemispheric compensatory processes in mental imagery. Science, 308(5722), 702–704.CrossRefPubMedGoogle Scholar
  40. Sampaio-Baptista, C., Khrapitchev, A. A., Foxley, S., Schlagheck, T., Scholz, J., Jbabdi, S., et al. (2013). Motor skill learning induces changes in white matter microstructure and myelination. The Journal of Neuroscience, 33(50), 19499–19503.  https://doi.org/10.1523/JNEUROSCI.3048-13.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Scholz, J., Klein, M. C., Behrens, T. E., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12(11), 1370–1371.  https://doi.org/10.1038/nn.2412.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schulte, T., Sullivan, E. V., Müller-Oehring, E., Adalsteinsson, E., & Pfefferbaum, A. (2005). Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cerebral Cortex, 15(9), 1384–1392.CrossRefPubMedGoogle Scholar
  43. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487–1505.  https://doi.org/10.1016/j.neuroimage.2006.02.024.CrossRefPubMedGoogle Scholar
  44. Stadlbauer, A., Salomonowitz, E., Strunk, G., Hammen, T., & Ganslandt, O. (2008). Age-related degradation in the central nervous system: assessment with diffusion-tensor imaging and quantitative fiber tracking. Radiology, 247(1), 179–188.  https://doi.org/10.1148/radiol.2471070707.CrossRefPubMedGoogle Scholar
  45. Tang, Y. Y., Ma, Y., Fan, Y., Feng, H., Wang, J., Feng, S., et al. (2009). Central and autonomic nervous system interaction is altered by short-term meditation. Proceedings of the National Academy of Sciences of the United States of America, 106(22), 8865–8870.  https://doi.org/10.1073/pnas.0904031106.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tang, Y.-Y., Lu, Q., Geng, X., Stein, E. A., Yang, Y., & Posner, M. I. (2010). Short-term meditation induces white matter changes in the anterior cingulate. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15649–15652.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tang, Y.-Y., Lu, Q., Fan, M., Yang, Y., & Posner, M. I. (2012a). Mechanisms of white matter changes induced by meditation. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10570–10574.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tang, Y. Y., Yang, L., Leve, L. D., & Harold, G. T. (2012b). Improving executive function and its neurobiological mechanisms through a mindfulness-based intervention: advances within the field of developmental neuroscience. Child Development Perspectives, 6(4), 361–366.  https://doi.org/10.1111/j.1750-8606.2012.00250.x.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tang, Y.-Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews. Neuroscience, 16(4), 213–225.  https://doi.org/10.1038/nrn3916.CrossRefPubMedGoogle Scholar
  50. Taylor, P. N., & Forsyth, R. (2016). Heterogeneity of trans-callosal structural connectivity and effects on resting state subnetwork integrity may underlie both wanted and unwanted effects of therapeutic corpus callostomy. NeuroImage: Clinical, 12, 341–347.  https://doi.org/10.1016/j.nicl.2016.07.010.CrossRefGoogle Scholar
  51. van der Velden, A. M., & Roepstorff, A. (2015). Neural mechanisms of mindfulness meditation: bridging clinical and neuroscience investigations. Nature Reviews. Neuroscience, 16(7), 439–439.CrossRefPubMedGoogle Scholar
  52. Vigneau, M., Beaucousin, V., Herve, P.-Y., Duffau, H., Crivello, F., Houde, O., et al. (2006). Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage, 30(4), 1414–1432.CrossRefPubMedGoogle Scholar
  53. Wake, H., Lee, P. R., & Fields, R. D. (2011). Control of local protein synthesis and initial events in myelination by action potentials. Science, 333(6049), 1647–1651.  https://doi.org/10.1126/science.1206998.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Xiong, G. L., & Doraiswamy, P. M. (2009). Does meditation enhance cognition and brain plasticity? Annals of the New York Academy of Sciences, 1172(1), 63–69.  https://doi.org/10.1196/annals.1393.002.CrossRefPubMedGoogle Scholar
  55. Yoon, Y. B., Yun, J. Y., Jung, W. H., Cho, K. I. K., Kim, S. N., Lee, T. Y., et al. (2015). Altered Fronto-temporal functional connectivity in individuals at ultra-high-risk of developing psychosis. PLoS One, 10(8), e0135347.  https://doi.org/10.1371/journal.pone.0135347.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yoon, Y. B., Shin, W. G., Lee, T. Y., Hur, J. W., Cho, K. I. K., Sohn, W. S., et al. (2017). Brain structural networks associated with intelligence and visuomotor ability. Scientific Reports, 7(1), 2177.  https://doi.org/10.1038/s41598-017-02304-z.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yoon, Y. B., Kim, M., Lee, J., Cho, K. I. K., Kwak, S., Lee, T. Y., & Kwon, J. S. (2019). Effect of tDCS on aberrant functional network connectivity in refractory hallucinatory schizophrenia: a pilot study. Psychiatry Investigation, 16(3), 244–248.  https://doi.org/10.30773/pi.2018.11.18.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zarei, M., Johansen-Berg, H., Smith, S., Ciccarelli, O., Thompson, A. J., & Matthews, P. M. (2006). Functional anatomy of interhemispheric cortical connections in the human brain. Journal of Anatomy, 209(3), 311–320.  https://doi.org/10.1111/j.1469-7580.2006.00615.x.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528–536.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Youngwoo Bryan Yoon
    • 1
    • 2
  • Dahye Bae
    • 1
  • Seoyeon Kwak
    • 1
  • Wu Jeong Hwang
    • 1
  • Kang Ik K. Cho
    • 1
    • 3
  • Kyung-Ok Lim
    • 4
  • Hye Yoon Park
    • 5
  • Tae Young Lee
    • 3
  • Sung Nyun Kim
    • 6
  • Jun Soo Kwon
    • 1
    • 5
    Email author
  1. 1.Department of Brain and Cognitive SciencesSeoul National University College of Natural SciencesSeoulRepublic of Korea
  2. 2.Department of PsychiatryWashington University School of Medicine in St. LouisSt. LouisUSA
  3. 3.Institute of Human Behavioral MedicineSNU-MRCSeoulRepublic of Korea
  4. 4.Department of Psychiatry, National Institute of Forensic PsychiatryMinistry of JusticeGongjuRepublic of Korea
  5. 5.Department of PsychiatrySeoul National University College of MedicineSeoulRepublic of Korea
  6. 6.Department of PsychiatrySMC- Seoul Medical CenterSeoulRepublic of Korea

Personalised recommendations