Mindfulness

, Volume 8, Issue 3, pp 717–727 | Cite as

Creativity Is Enhanced by Long-Term Mindfulness Training and Is Negatively Correlated with Trait Default-Mode-Related Low-Gamma Inter-Hemispheric Connectivity

  • Aviva Berkovich-Ohana
  • Joseph Glicksohn
  • Tal Dotan Ben-Soussan
  • Abraham Goldstein
ORIGINAL PAPER

Abstract

It is becoming increasingly accepted that creative performance, especially divergent thinking, may depend on reduced activity within the default mode network (DMN), related to mind-wandering and autobiographic self-referential processing. However, the relationship between trait (resting-state) DMN activity and divergent thinking is controversial. Here, we test the relationship between resting-state DMN activity and divergent thinking in a group of mindfulness meditation practitioners. We build on our two previous reports, which have shown DMN activity to be related to resting-state log gamma (25–45 Hz) power and inter-hemispheric functional connectivity. Using the same cohort of participants (three mindfulness groups with increasing expertise, and controls, n = 12 each), we tested (1) divergent thinking scores (Flexibility and Fluency) using the Alternative Uses task and (2) correlation between Alternative Uses scores and DMN activity as measured by resting-state gamma power and inter-hemispheric functional connectivity. We found that both Fluency and Flexibility (1) were higher in the two long-term mindfulness groups (>1000 h) compared to short-term mindfulness practitioners and control participants and (2) negatively correlated with gamma inter-hemispheric functional connectivity (frontal-midline and posterior-midline connections). In addition, (3) Fluency was significantly correlated with mindfulness expertise. Together, these results show that long-term mindfulness meditators exhibit higher divergent thinking scores in correlation with their expertise and demonstrate a negative divergent thinking—resting-state DMN activity relationship, thus largely support a negative DMN-creativity connection.

Keywords

Creativity Divergent thinking Electroencephalography (EEG) Gamma band Functional connectivity Default mode network (DMN) Mindfulness 

Notes

Acknowledgments

This paper is based on a thesis (first author), supervised by the second and fourth authors, submitted to Bar-Ilan University in partial fulfilment of the requirements toward a Ph.D. This work was supported by the Mind and Life Institute Francisco J. Varela Research Award 6546 to A. Berkovich-Ohana.

Supplementary material

12671_2016_649_MOESM1_ESM.docx (40 kb)
ESM 1 (DOCX 39 kb)

References

  1. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550–562.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Baird, B., Smallwood, J., Mrazek, M. D., Kam, J. W., Franklin, M. S., & Schooler, J. W. (2012). Inspired by distraction mind wandering facilitates creative incubation. Psychological Science. doi: 10.1177/0956797612446024.PubMedGoogle Scholar
  3. Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., Hodges, D. A., Koschutnig, K., & Neubauer, A. C. (2014a). Creativity and the default network: a functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014b). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42(7), 1186–1197.CrossRefGoogle Scholar
  5. Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5(10964), 1–14. doi: 10.1038/srep10964.Google Scholar
  6. Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 87–95.PubMedCrossRefGoogle Scholar
  7. Bechtereva, N. P., Korotkov, A. D., Pakhomov, S., Roudas, M. S., Starchenko, M. G., & Medvedev, S. V. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology, 53(1), 11–20.PubMedCrossRefGoogle Scholar
  8. Ben-Soussan, T. D., Glicksohn, J., Goldstein, A., Berkovich-Ohana, A., & Donchin, O. (2013). Into the square and out of the Box: the effects of Quadrato Motor Training on creativity and alpha coherence. PLoS One, 8(1), e55023.CrossRefGoogle Scholar
  9. Berkovich-Ohana, A. (2010). Transforming meditative transcendence into trait: an electrophysiological approach. Ramat Gan: Bar Ilan.Google Scholar
  10. Berkovich-Ohana, A., Glicksohn, J., & Goldstein, A. (2012). Mindfulness-induced changes in gamma band activity—implications for the default mode network, self-reference and attention. Clinical Neurophysiology, 123(4), 700–710.PubMedCrossRefGoogle Scholar
  11. Berkovich-Ohana, A., Glicksohn, J., & Goldstein, A. (2013). Studying the default mode and its mindfulness-induced changes using EEG functional connectivity. Social Cognitive and Affective Neuroscience, 5, 1–9. doi: 10.1093/scan/nst153.Google Scholar
  12. Berkovich-Ohana, A., Harel, M., Hahamy, A., Arieli, A., & Malach, R. (2016). Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators. NeuroImage, 135, 125–134.PubMedCrossRefGoogle Scholar
  13. Bhattacharya, J., & Petsche, H. (2005). Drawing on mind’s canvas: differences in cortical integration patterns between artists and non‐artists. Human Brain Mapping, 26(1), 1–14.PubMedCrossRefGoogle Scholar
  14. Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277–290.PubMedCrossRefGoogle Scholar
  15. Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y. Y., Weber, J., & Kober, H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20254–20259.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Buckner, R., Andrews-Hanna, J., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. In A. Kingstone & B. Miller (Eds.), The year in cognitive neuroscience 2008. Annals of the New York Academy of Sciences (Vol. 1124, pp. 1–38). New York: New York Academy of Sciences.Google Scholar
  17. Cacioppo, J. T., Tassinary, L. G., & Fridlund, A. J. (1990). The skeletomotor system. In L. Tassinary (Ed.), Principles of psychophysiology (pp. 325–384). New York: Cambridge Univ. Press.Google Scholar
  18. Capurso, V., Fabbro, F., & Crescentini, C. (2013). Mindful creativity: the influence of mindfulness meditation on creative thinking. Frontiers in Psychology, 4, 1020.Google Scholar
  19. Carruthers, P. (2007). The creative-action theory of creativity. In P. Carruthers, S. Lawrence, & S. Stich (Eds.), The innate mind: foundations and the future. Oxford: Oxford University Press.Google Scholar
  20. Carruthers, P. (2011). Creative action in mind. Philosophical Psychology, 24(4), 437–461.CrossRefGoogle Scholar
  21. Chen, A. C., Feng, W., Zhao, H., Yin, Y., & Wang, P. (2008). EEG default mode network in the human brain: spectral regional field powers. NeuroImage, 41(2), 561–574.PubMedCrossRefGoogle Scholar
  22. Chen, J.-L., Ros, T., & Gruzelier, J. H. (2013). Dynamic changes of ICA-derived EEG functional connectivity in the resting state. Human Brain Mapping, 34(4), 852–868. doi: 10.1002/hbm.21475.PubMedCrossRefGoogle Scholar
  23. Chiesa, A., & Serretti, A. (2010). A systematic review of neurobiological and clinical features of mindfulness meditations. Psychological Medicine, 40(08), 1239–1252.PubMedCrossRefGoogle Scholar
  24. Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thompson-Schill, S. L. (2013). Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4(2), 81–89.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Colzato, L. S., Ozturk, A., & Hommel, B. (2012). Meditate to create: the impact of focused-attention and open-monitoring training on convergent and divergent thinking. Frontiers in Psychology, 3(5), 1083.Google Scholar
  26. Colzato, L. S., Szapora, A., Lippelt, D., & Hommel, B. (2014). Prior meditation practice modulates performance and strategy use in convergent- and divergent-thinking problems. Mindfulness, 1–7. doi: 10.1007/s12671-014-0352-9
  27. Cowger, E. L., & Torrance, E. P. (1982). Further examination of the quality of changes in creative functioning resulting from meditation (Zazen) training. Creative Child and Adult Quarterly, 7(4), 211–17.Google Scholar
  28. Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11(6), 1011–1026.CrossRefGoogle Scholar
  29. Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822–848.PubMedCrossRefGoogle Scholar
  30. Ding, X., Tang, Y.-Y., Tang, R., & Posner, M. I. (2014). Improving creativity performance by short-term meditation. Behavioral and Brain Functions, 10(1), 9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Domino, G. (1977). Transcendental meditation and creativity: an empirical investigation. Journal of Applied Psychology, 62(3), 358–362.PubMedCrossRefGoogle Scholar
  32. Farb, N. A. S., Segal, Z. V., Mayberg, H., Bean, J., McKeon, D., Fatima, Z., & Anderson, A. K. (2007). Attending to the present: mindfulness meditation reveals distinct neural modes of self-reference. Social Cognitive and Affective Neuroscience, 2, 313–322.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ferree, T. C., Luu, P., Russell, G. S., & Tucker, D. M. (2001). Scalp electrode impedance, infection risk, and EEG data quality. Clinical Neurophysiology, 112(3), 536–544.PubMedCrossRefGoogle Scholar
  34. Fingelkurts, A. A., Fingelkurts, A. A., Ermolaev, V. A., & Kaplan, A. Y. (2006). Stability, reliability and consistency of the compositions of brain oscillations. International Journal of Psychophysiology, 59(2), 116–126.PubMedCrossRefGoogle Scholar
  35. Florian, G., Andrew, C., & Pfurtscheller, G. (1998). Do changes in coherence always reflect changes in functional coupling? Electroencephalography and Clinical Neurophysiology, 106(1), 87–91.PubMedCrossRefGoogle Scholar
  36. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 103, 10046–10051.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fox, K. C., Nijeboer, S., Dixon, M. L., Floman, J. L., Ellamil, M., Rumak, S. P., Sedlmeier, P., & Christoff, K. (2014). Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neuroscience & Biobehavioral Reviews, 43, 48–73.CrossRefGoogle Scholar
  39. Golland, Y., Bentin, S., Gelbard, H., Benjamini, Y., Heller, R., Nir, Y., Hasson, U., & Malach, R. (2007). Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cerebral Cortex, 17(4), 766–777.PubMedCrossRefGoogle Scholar
  40. Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Greenberg, J., Reiner, K., & Meiran, N. (2012). “Mind the trap”: mindfulness practice reduces cognitive rigidity. PLoS One, 7(5), e36206.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Guilford, J. P. (1968). Creativity, intelligence, and their educational implications. San Diego: Robert Knapp.Google Scholar
  43. Harmelech, T., & Malach, R. (2013). Neurocognitive biases and the patterns of spontaneous correlations in the human cortex. Trends in Cognitive Sciences, 17(12), 606–615.PubMedCrossRefGoogle Scholar
  44. Harmelech, T., Preminger, S., Wertman, E., & Malach, R. (2013). The day-after effect: long term, Hebbian-like restructuring of resting-state fMRI patterns induced by a single epoch of cortical activation. The Journal of Neuroscience, 33(22), 9488–9497.PubMedCrossRefGoogle Scholar
  45. Hasenkamp, W., & Barsalou, L. W. (2012). Effects of meditation experience on functional connectivity of distributed brain networks. Frontiers in Human Neuroscience, 6, 1–14. doi: 10.3389/fnhum.2012.00038.CrossRefGoogle Scholar
  46. Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.-P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106(6), 2035–2040.CrossRefGoogle Scholar
  47. Horan, R. (2009). The neuropsychological connection between creativity and meditation. Creativity Research Journal, 21(2), 199–222.CrossRefGoogle Scholar
  48. Jaušovec, N., & Jaušovec, K. (2000). Differences in resting EEG related to ability. Brain Topography, 12(3), 229–240.PubMedCrossRefGoogle Scholar
  49. Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31(3), 398–409.PubMedPubMedCentralGoogle Scholar
  50. Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7. doi: 10.3389/fnhum.2013.00330.
  51. Kabat-Zinn, J. (2003). Mindfulness-based interventions in context: past, present, and future. Clinical Psychology: Science & Practice, 10(2), 144–156.Google Scholar
  52. Kleibeuker, S. W., Koolschijn, P. C., Jolles, D. D., De Dreu, C. K., & Crone, E. A. (2013). The neural coding of creative idea generation across adolescence and early adulthood. Frontiers in Human Neuroscience, 7(905), 10.3389.Google Scholar
  53. Kühn, S., Ritter, S. M., Müller, B. C., Baaren, R. B., Brass, M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity—a structural MRI study. The Journal of Creative Behavior, 48(2), 152–163.CrossRefGoogle Scholar
  54. Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., & Kleinschmidt, A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11053–11058.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Levy-Drori, S., & Henik, A. (2006). Concreteness and context availability in lexical decision tasks. The American Journal of Psychology, 45–65.Google Scholar
  56. Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation. PLoS One, 3(2), e1679.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lippelt, D. P., Hommel, B., & Colzato, L. S. (2014). Focused attention, open monitoring and loving kindness meditation: effects on attention, conflict monitoring, and creativity—a review. Frontiers in Psychology, 5. doi: 10.3389/fpsyg.2014.01083
  58. Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., Rizik-Baer, D. A., & Braun, A. R. (2012). Neural correlates of lyrical improvisation: an fMRI study of freestyle rap. Scientific Reports, 2, 834. doi: 10.1038/srep00834.PubMedPubMedCentralGoogle Scholar
  59. Lutz, A., Slagter, H. A., Dunne, J. D., & Davidson, R. J. (2008). Attention regulation and monitoring in meditation. Trends in Cognitive Sciences, 12(4), 163–169.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 104, 13170–13175.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Martindale, C. (1971). Degeneration, disinhibition, and genius. Journal of the History of the Behavioral Sciences, 7(2), 177–182.PubMedCrossRefGoogle Scholar
  62. Martindale, C. (1977). Creativity, consciousness, and cortical arousal. Journal of Altered States of Consciousness, 3(1), 69–87.Google Scholar
  63. Martindale, C., & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological Psychology, 6(3), 157–167.PubMedCrossRefGoogle Scholar
  64. Martindale, C., & Mines, D. (1975). Creativity and cortical activation during creative, intellectual and EEG feedback tasks. Biological Psychology, 3(2), 91–100.PubMedCrossRefGoogle Scholar
  65. Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5(3), 229–240.PubMedCrossRefGoogle Scholar
  66. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure and Function, 214(5–6), 655–667.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Miller, B. L., Cummings, J., Mishkin, F., Boone, K., Prince, F., Ponton, M., & Cotman, C. (1998). Emergence of artistic talent in frontotemporal dementia. Neurology, 51(4), 978–982.PubMedCrossRefGoogle Scholar
  68. Mok, L. W. (2014). The interplay between spontaneous and controlled processing in creative cognition. Frontiers in Human Neuroscience, 28, 1–5. doi: 10.3389/fnhum.2014.00663.Google Scholar
  69. Mormann, F., Lehnertz, K., David, P., & Elger, C. (2000). Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena, 144, 358–369.CrossRefGoogle Scholar
  70. O’Haire, T. D., & Marcia, J. E. (1980). Some personality characteristics associated with Ananda Marga meditators. Perceptual and Motor Skills, 5(1), 447–452.Google Scholar
  71. Orme-Johnson, D. W., & Granieri, B. (1977). The effects of the age of enlightenment Governor Training Courses on field independence, creativity, intelligence and behavioral flexibility. Scientific Research on the Transcendental Meditation Program Collected Papers, 1, 103,713–8.Google Scholar
  72. Orme-Johnson, D. W., Clements, G., Haynes, C. T., & Badaoui, K. (1977). Higher states of consciousness: EEG coherence, creativity, and experiences of the sidhis. Scientific Research on Maharishi’s Transcendental Meditation and TM-Sidhi Program, Collected Papers, 1, 705–712.Google Scholar
  73. Pereda, E., Quiroga, R. Q., & Bhattacharya, J. (2005). Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology, 77(1–2), 1–37.PubMedCrossRefGoogle Scholar
  74. Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187.PubMedCrossRefGoogle Scholar
  75. Petsche, H. (1996). Approaches to verbal, visual and musical creativity by EEG coherence analysis. International Journal of Psychophysiology, 24(1), 145–159.PubMedCrossRefGoogle Scholar
  76. Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role of (dis) inhibition in creativity: decreased inhibition improves idea generation. Cognition, 134, 110–120.PubMedCrossRefGoogle Scholar
  77. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Russ, S. W. (1998). Play, creativity, and adaptive functioning: implications for play interventions. Journal of Clinical Child Psychology, 27(4), 469–480.PubMedCrossRefGoogle Scholar
  79. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: the neural bases of creative thinking and originality. Neuropsychologia, 49(2), 178–185.PubMedCrossRefGoogle Scholar
  81. Smallwood, J., Brown, K., Baird, B., & Schooler, J. W. (2012). Cooperation between the default mode network and the frontal-parietal network in the production of an internal train of thought. Brain Research, 1428, 60–70.PubMedCrossRefGoogle Scholar
  82. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., & Laird, A. R. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106(31), 13040–13045.CrossRefGoogle Scholar
  83. Snyder, A., Mitchell, J., Bossomaier, T., & Pallier, G. (2004). The creativity quotient: an objective scoring of ideational fluency. Creativity Research Journal, 16(4), 415–420.CrossRefGoogle Scholar
  84. Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53(1), 303–317.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sternberg, R. J., & Lubart, T. I. (1993). Investing in creativity. Psychological Inquiry, 4(3), 229–232.CrossRefGoogle Scholar
  86. Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Cerebral blood flow during rest associates with general intelligence and creativity. PLoS One, 6(9), e25532.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 2921–2929.PubMedCrossRefGoogle Scholar
  88. Tang, Y.-Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews Neuroscience, 16(4), 213–225.PubMedCrossRefGoogle Scholar
  89. Tomasino, B., Fregona, S., Skrap, M., & Fabbro, F. (2012). Meditation-related activations are modulated by the practices needed to obtain it and by the expertise: an ALE meta-analysis study. Frontiers in Human Neuroscience, 6(346), 1–14. doi: 10.3389/fnhum.2012.00346.Google Scholar
  90. Varela, F. J., & Thompson, E. (2003). Neural synchrony and the unity of mind: a neurophenomenological perspective. In In A.Cleeremans (Ed.), The unity of consciousness; Binding, integration, and dissociation (pp. 266–287). Oxford: Oxford University Press.Google Scholar
  91. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328–3342.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., & Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51, 92–102.PubMedCrossRefGoogle Scholar
  93. Whitham, E. M., Pope, K. J., Fitzgibbon, S. P., Lewis, T., Clark, C. R., Loveless, S., Broberg, M., Wallace, A., DeLosAngeles, D., & Lillie, P. (2007). Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clinical Neurophysiology, 118(8), 1877–1888.PubMedCrossRefGoogle Scholar
  94. Yuval-Greenberg, S., & Deouell, L. Y. (2009). The broadband-transient induced gamma-band response in scalp EEG reflects the execution of saccades. Brain Topography, 22(1), 3–6.PubMedCrossRefGoogle Scholar
  95. Zabelina, D. L., Robinson, M. D., Ostafin, B. D., & Council, J. R. (2011). Manipulating mindfulness benefits creative elaboration at high levels of neuroticism. Empirical Studies of the Arts, 29(2), 243–255.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Aviva Berkovich-Ohana
    • 1
    • 2
  • Joseph Glicksohn
    • 2
    • 3
  • Tal Dotan Ben-Soussan
    • 2
    • 4
  • Abraham Goldstein
    • 2
    • 5
  1. 1.Faculty of Education, The Edmond J. Safra Brain Research Center for the Study of Learning DisabilitiesUniversity of HaifaHaifaIsrael
  2. 2.The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research CenterBar-Ilan UniversityRamat GanIsrael
  3. 3.Department of CriminologyBar-Ilan UniversityRamat GanIsrael
  4. 4.Education and Didactics, Patrizio Paoletti FoundationResearch Institute for NeuroscienceAssisiItaly
  5. 5.Department of PsychologyBar-Ilan UniversityRamat GanIsrael

Personalised recommendations