Skip to main content
Log in

Green Synthesis of Silver Nanoparticles Using Microbial Biosurfactant Produced by a Newly Isolated Klebsiella sp. Strain RGUDBI03 Through a Single Step Method and Exploring its Role in Enhancing the Chickpea and Rice Seed Germination

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Improving global food security by boosting crop production through environmentally friendly technology is critical in the fight against malnutrition. This study explores the use of green chemistry combined with nanotechnology to enhance seed germination. Silver nanoparticles (Ag NPs) were synthesized using a bacterial biosurfactant extracted from a newly discovered Klebsiella sp. strain RGUDBI03 found in a petroleum-contaminated site, employing a one-step method involving autoclaving. Electron microscopy analysis revealed well-dispersed Ag NPs ranging from 10–40 nm. X-ray diffraction (XRD) analysis confirmed the crystalline nature of the NPs with fcc lattice points of 111, 200, 220, and 311. Fourier-transform infrared spectroscopy (FTIR) spectra of the bacterial biosurfactant and Ag NPs showed the presence of C = C-H, C-H, and CH2 groups, confirming the biosurfactant's role as a reducing and capping agent. Nano-treated seeds of chickpea (Cicer arietinum), and rice (Oryza sativa) exhibited enhanced water uptake rates and 99% germination under optimized condition as compared to that of the control (i.e., 78–80%). This led to a more than threefold increase in α-amylase activity in the treated seeds (i.e., 0.33 and 1.54 mg/g respectively for chickpea and rice seeds) as compared to their respective control (i.e., 0.12 and 0.48 mg/g), converting starch into soluble sugar and promoting germination and growth. Furthermore, the Ag NPs showed no cytotoxic effects on red blood cells and earthworms (Eudrilus eugeniae), with visibly healthy villi in the gut region of treated samples, demonstrating their non-cytotoxic and eco-friendly nature. Overall, this study provides a comprehensive depiction of biosurfactant-mediated Ag NPs synthesis, their application in seed germination and growth enhancement, the likely mode of action of Ag NPs, as well as cytotoxicity and eco-toxicity assessment. Additionally, biosurfactant extracted from a newly isolated Klebsiella sp. is reported for the first time for the synthesis of Ag NPs, implementing in enhancing seed germination rate up to almost one hundred percent with no sign of cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All the data pertaining to this paper are available.

References

  1. Tripathi, A. D., Mishra, R., Maurya, K. K., Singh, R. B., & Wilson, D. W. (2019). Estimates for world population and global food availability for global health. In The role of functional food security in global health, 3–24. Academic Press. https://doi.org/10.1016/B978-0-12-813148-0.00001-3

  2. Ahmed, A., Elbushra, A., & Elrasheed, M. (2023). Implications of climate change on agriculture and food security. Cultivation for Climate Change Resilience, 1, 2–27.

    Google Scholar 

  3. Bauddh, K., Kumar, S., Singh, R. P., & Korstad, J. (2020). Ecological and practical applications for sustainable agriculture. Springer . https://doi.org/10.1007/978-981-15-3372-3

  4. Mahankale, N. R. (2024). Global influence of synthetic fertilizers on climate change. Applied Geomatics, 16(1), 317–317.https://doi.org/10.1007/s12518-023-00511-0

  5. You, H., Yang, S., & Yang, H. (2012). Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chemical Society Reviews, 42(7), 2880–2904.

    Article  Google Scholar 

  6. Harish, V., AnsariMM, TewariD., et al. (2023). Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: a review. Journal of the Taiwan Institute of Chemical Engineers, 149, 105010.

    Article  Google Scholar 

  7. Yadav, R. K., Singh, N. B., Singh, A., Yadav, V., Bano, C., Khare, S., & Niharika. (2020). Expanding the horizons of nanotechnology in agriculture: recent advances, challenges and future perspectives. Vegetos, 33, 203–221.

    Article  Google Scholar 

  8. Dziergowska, K., & Michalak, I. (2022). The role of nanoparticles in sustainable agriculture. In Smart Agrochemicals for Sustainable Agriculture, 225–278. Academic Press. https://doi.org/10.1016/B978-0-12-817036-6.00007-8

  9. Upadhyay, P. K., Dey, A., Singh, V. K., Dwivedi, B. S., Singh, T., GA, R., Babu, S., Rathore, S. S., Singh, R.K., Shekhawat, K., Rangot, M., Kumar, P., Yadav, D., Singh, D.P., Dasgupta, D & Shukla, G. (2023). Conjoint application of nano-urea with conventional fertilizers: An energy efficient and environmentally robust approach for sustainable crop production. Plos one, 18(7), e0284009. https://doi.org/10.1371/journal.pone.0284009

  10. Kantwa, S., & Yadav, L. R. (2022). Nano urea: application and significance. Just Agriculture-Multidisciplinary E-Newsletter, 2(7), 1–6.

    Google Scholar 

  11. Kumar, A., Ram, H., Kumar, S., et al. (2023). A comprehensive review of nano-urea vs. conventional urea. International Journal of Plant & Soil Science, 35(23), 32–40.

    Article  Google Scholar 

  12. Ramanathan, A., & Aqra, M. (2019). An overview of the green road to the synthesis of nanoparticles. Journal of Materials Science Research and Reviews, 2(3), 1–11.

    Google Scholar 

  13. Shnoudeh, A. J., HamadI, A. R. W., QadumiiL, JaberAY., & SurchiHS, AlkelanySZ. (2019). Synthesis, characterization, and applications of metal nanoparticles (pp. 527–612). Academic Press.

    Google Scholar 

  14. Ahmed, S. F., Mofijur, M., Rafa, N. S. F., et al. (2022). Green approaches in synthesising nanomaterials for environmental nanobioremediation: technological advancements, applications, benefits and challenges. Environmental Research, 204, 111967.

    Article  Google Scholar 

  15. Perumal, S., Samy, M. V. G., & Subramanian, D. (2021). Selenium nanoparticle synthesis from endangered medicinal herb (Enicostema axillare). Bioprocess and Biosystems Engineering, 44(9), 1853–1863.

    Article  Google Scholar 

  16. Zahoor, M., Nisar, M., Haq, S. I., Ikram, M., Islam, N. U., Naeem, M., & Alotaibi, A. (2023). Green synthesis, characterization of silver nanoparticles using Rhynchosia capitata leaf extract and their biological activities. Open Chemistry, 21(1), 20220318.

    Article  Google Scholar 

  17.  Vala, A. K., Trivedi, H., Gosai, H., Panseriya, H., & Dave, B. (2021). Biosynthesized silver nanoparticles and their therapeutic applications. In Comprehensive analytical chemistry, (94), 547–584. Elsevier. https://doi.org/10.1016/bs.coac.2020.12.010 

  18. Jujaru, M., & Jain, A. (2022). Biological synthesis of nanoparticles and their applications in bioremediation: a mini-review. In International conference on nanotechnology for sustainable living and environment, 89–101. Springer Nature. https://doi.org/10.4236/ns.2022.146022

  19. Mahakham, W., Sarmah, A. K., Maensiri, S., & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Science and Reports, 7(1), 1–2.

    Google Scholar 

  20. Abbasi Khalaki, M., Moameri, M., Asgari Lajayer, B., & Astatkie, T. (2021). Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regulation, 93(1), 13–28.

    Article  Google Scholar 

  21. Karmous, I., Gammoudi, N., & Chaoui, A. (2023). Assessing the potential role of zinc oxide nanoparticles for mitigating cadmium toxicity in capsicum annuum L. under in vitro conditions. Journal of Plant Growth Regulation, 42(2), 719–734.

    Article  Google Scholar 

  22. Alomar, T. S., AlMasoud, N., Awad, M. A., El-Tohamy, M. F., & Soliman, D. A. (2020). An eco-friendly plant-mediated synthesis of silver nanoparticles: characterization, pharmaceutical and biomedical applications. Materials Chemistry and Physics, 249, 123007.

    Article  Google Scholar 

  23. Edison, T. N. J. I., Atchudan, R., Karthik, R. N., Balaji, J., Xiong, D., & Lee, Y. R. (2020). Catalytic degradation of organic dyes using green synthesized N-doped carbon supported silver nanoparticles. Fuel, 280, 118682.

    Article  Google Scholar 

  24. Wan Mat Khalir, W. K. A., Shameli, K., Jazayeri, S. D., Othman, N. A., Che Jusoh, N. W., & Hassan, N. M. (2020). biosynthesized silver nanoparticles by aqueous stem extract of entada spiralis and screening of their biomedical activity. Frontiers in Chemistry, 8, 1–15.

    Article  Google Scholar 

  25. Mehwish, H. M., Rajoka, M. S. R., Xiong, Y., et al. (2021). Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. Journal of Environmental Chemical Engineering, 9(4), 105290.

    Article  Google Scholar 

  26. Khan, S., Zahoor, M., Sher Khan, R., Ikram, M., & Islam, N. U. (2023). The impact of silver nanoparticles on the growth of plants: the agriculture applications. Heliyon, 9(6), e16928.

    Article  Google Scholar 

  27. Fadiji, A. E., Mortimer, P. E., Xu, J., Ebenso, E. E., & Babalola, O. O. (2022). Biosynthesis of nanoparticles using endophytes: a novel approach for enhancing plant growth and sustainable agriculture. Sustainability, 14, 10839.

    Article  Google Scholar 

  28. Research, G. V. (2022). Rice market size, share & trends analysis report by product (long-grain, medium-grain, short-grain), by distribution channel (offline, online), by region, and segment forecasts, 2022 – 2028 (https://www.grandviewresearch.com/industry-analysis/rice-market-). Market Analysis Report. Accessed 28 Feb 2024

  29. Rice-India. (2023). Rice - India. Market Insights. https://www.statista.com/outlook/cmo/food/bread-cereal-products/rice/india. Accessed 28 Feb 2024

  30. Calles, T., Xipsiti, M., & del Castello, R. (2019). Legacy of the international year of pulses. Environment and Earth Science, 78(5), 1–8.

    Article  Google Scholar 

  31. Gogoi, B., Das, I., Gogoi, C. M. D., & Bandyopadhyay, T. (2022). Bioremediation of motor oil - contaminated soil and water by a novel indigenous Pseudomonas otitidis strain DU13 and characterization of its biosurfactant. Biotech, 3, 1–10.

    Google Scholar 

  32. Basumatary, M., Das, S., Gogoi, M., Das, I., Charingia, D., & Borah, D. (2020). Evaluation of pilot scale in-vitro and ex-situ hydrocarbon bioremediation potential of two novel indigenous strains of Bacillus vallismortis. Bioremediation Journal, 24(2–3), 190–203.

    Article  Google Scholar 

  33. Shwani, A., Zuo, B., Alrubaye, A., Zhao, J., & Rhoads, D. D. (2023). A simple, inexpensive alkaline method for bacterial DNA extraction from environmental samples for PCR surveillance and microbiome analyses. Applied Sciences, 14(1), 141.

    Article  Google Scholar 

  34. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.

    Article  Google Scholar 

  35. Bhosale, S. S., Rohiwal, S. S., Chaudhary, L. S., Pawar, K. D., Patil, P. S., & Tiwari, A. P. (2019). Photocatalytic decolorization of methyl violet dye using Rhamnolipid biosurfactant modified iron oxide nanoparticles for wastewater treatment. Journal of Materials Science: Materials in Electronics, 30(5), 4590–4598.

    Google Scholar 

  36. Goswami, M., & Deka, S. (2019). Biosurfactant production by a rhizosphere bacteria Bacillus altitudinis MS16 and its promising emulsification and antifungal activity. Colloids Surf B: Biointerfaces, 178, 285–296.

    Article  Google Scholar 

  37. Das, M., Borah, D., Patowary, K., Borah, M., Khataniar, A., & Kakoti, B. B. (2019). Antimicrobial activity of silver nanoparticles synthesised by using microbial biosurfactant produced by a newly isolated Bacillus vallismortis MDU6 strain. IET Nanobiotechnology, 13(9), 967–973.

    Article  Google Scholar 

  38. Sharma, D., Afzal, S., & Singh, N. K. (2021). Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. Journal of Biotechnology, 336, 64–75. https://doi.org/10.1016/j.jbiotec.2021.06.014

  39. Bhardwaj, A., Anand, A., & Nagarajan, S. (2012). Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant PhysiolBiochem, 57, 67–73.

    Google Scholar 

  40. Ghosh, A., Dey, K., Dey, A. N., & Bauri, F. K. (2017). Effects of different pre-germination treatment methods on the germination and seedling growth of yellow passion fruit (Passiflora edulis var flavicarpa). International Journal of Current Microbiology and Applied Sciences, 6(4), 630–636.

    Article  Google Scholar 

  41. Chen, L. Q., Fang, L., Ling, J., Ding, C. Z., Kang, B., & Huang, C. Z. (2015). Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chemical Research in Toxicology, 28(3), 501–509.

    Article  Google Scholar 

  42. Chi, Z., Lin, H., Li, W., Zhang, X., & Zhang, Q. (2018). In vitro assessment of the toxicity of small silver nanoparticles and silver ions to the red blood cells. Environmental Science and Pollution Research, 25(32), 32373–32380.

    Article  Google Scholar 

  43. Borah, D., Hazarika, M., Tailor, P., Silva, A. R., Chetia, B., Singaravelu, G., & Das, P. (2018). Starch-templated bio-synthesis of gold nanoflowers for in vitro antimicrobial and anticancer activities. Applied Nanoscience, 8, 241–253.

    Article  Google Scholar 

  44. Zawadzka, K., Felczak, A., Nowak, M., Kowalczyk, A., Piwoński, I., & Lisowska, K. (2021). Antimicrobial activity and toxicological risk assessment of silver nanoparticles synthesized using an eco-friendly method with Gloeophyllum striatum. Journal of Hazardous Materials, 418, 126–316. https://doi.org/10.1016/j.jhazmat.2021.126316

  45. Samrot, A. V., Justin, C., Padmanaban, S., & Burman, U. (2017). A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae. Applied Nanoscience (Switzerland), 7(1–2), 17–23.

    Article  Google Scholar 

  46. The Global Agricultural Market Research Report. (2024). Agricultural Nanotechnology Market Size, Share, Trends and Future Scope Analysis to 2031. https://www.insightaceanalytic.com/report/agricultural-nanotechnology-market/1530. Accessed 28 Feb 2024

  47. Kale, S. K., Parishwad, G. V., Husainy, A. S. N., & Patil, A. S. (2021). Emerging agriculture applications of silver nanoparticles. ES Food & Agroforestry, pp.17–22.

  48. Chen, J., Zhang, D., Zeb, A., & Nanehkaran, Y. A. (2020). Identification of rice plant diseases using lightweight attention networks. Expert Systems With Applications, 169, 114514.

    Article  Google Scholar 

  49. Rice Southeast Asia. (2023). Rice - Southeast Asia. Market Insights. https://www.statista.com/outlook/cmo/food/bread-cereal-products/rice/southeast-asia. Accessed 28 Feb 2024

  50. Mir, A. H., Bhat, M. A., Fayaz, H., et al. (2019). Assessment of cold tolerance in chickpea accessions in North-Western Himalayas of Jammu and Kashmir, India. Journal of Pharmacognosy and Phytochemistry, 8(4), 2268–2274.

    Google Scholar 

  51. Merga, B., & Haji, J. (2019). Economic importance of chickpea: production, value, and world trade. Cogent Food & Agriculture, 5(1), 1615718. https://doi.org/10.1080/23311932.2019.1615718

  52. Chickpea Market. (2022). Chickpea market outlook (2022 to 2032). Sales analysis of chickpea market (2017 to 2021) Vs demand outlook country-wise insights, 44: 2022. https://www.gminsights.com/industryanalysis/chickpeas-market. Accessed 20 Feb 2024

  53. Shah, S. S., Shaikh, M. N., Khan, M. Y., Alfasane, M. A., Rahman, M. M., & Aziz, M. A. (2021). Present status and future prospects of jute in nanotechnology: a review. The Chemical Record, 21(7), 1631–1665. https://doi.org/10.1002/tcr.202100135

  54. Singh, A., Tiwari, S., Pandey, J., Lata, C., & Singh, I. K. (2021). Role of nanoparticles in crop improvement and abiotic stress management. Journal of Biotechnology, 337, 57–70.

    Article  Google Scholar 

  55. Markande, A. R., Patel, D., & Varjani, S. (2021). A review on biosurfactants: properties, applications and current developments. Bioresource Technology, 330, 124963.

    Article  Google Scholar 

  56. Ndaba, B., Roopnarain, A., Rama, H., & Maaza, M. (2022). Biosynthesized metallic nanoparticles as fertilizers: an emerging precision agriculture strategy. Journal of Integrative Agriculture, 21(5), 1225–1242.

    Article  Google Scholar 

  57. Christopher, F. C., Ponnusamy, S. K., Ganesan, J. J., & Ramamurthy, R. (2019). Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis – a comprehensive review. IET Nanobiotechnology, 13(3), 243–249.

    Article  Google Scholar 

  58. Bezza, F. A., Tichapondwa, S. M., & Chirwa, E. M. N. (2020). Synthesis of biosurfactant stabilized silver nanoparticles, characterization and their potential application for bactericidal purposes. Journal of Hazardous Materials, 393, 122319.

    Article  Google Scholar 

  59. Pryshchepa, O., Pomastowski, P., & Buszewski, B. (2020). Silver nanoparticles: synthesis, investigation techniques, and properties. Advances in Colloid and Interface Science, 284, 87–100.

    Article  Google Scholar 

  60. Saravanan, A., Kumar, P. S., Karishma, S., Vo, D. V. N., Jeevanantham, S., Yaashikaa, P. R., & George, C. S. (2021). A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere, 264, 128580.

    Article  Google Scholar 

  61. Biswal, A. K., & Misra, P. K. (2020). Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields. Materials Chemistry and Physics, 250, 123014.

    Article  Google Scholar 

  62. Manchola, L., & Dussán, J. (2014). Lysinibacillussphaericus and geobacillussp biodegradation of petroleum hydrocarbons and biosurfactant production. Remediation Journal, 25(1), 85–100. https://doi.org/10.1002/rem.21416

  63. Borah, D., Agarwal, K., Khataniar, A., Konwar, D., Gogoi, S. B., & Kallel, M. (2019). A newly isolated strain of Serratia sp. from an oil spillage site of Assam shows excellent bioremediation potential. 3 Biotech, 9(7), 1–12.

    Article  Google Scholar 

  64. Almansoory, A. F., Hasan, H. A., Abdullah, S. R. S., Idris, M., Anuar, N., & Al-Adiwish, W. M. (2019). Biosurfactant produced by the hydrocarbon-degrading bacteria: characterization, activity and applications in removing TPH from contaminated soil. Environmental technology & innovation, 14, 100–347.https://doi.org/10.1016/j.eti.2019.100347

  65. Arifiyanto, A., Surtiningsih, T., Agustina, D., & Alami, N. H. (2020). Antimicrobial activity of biosurfactants produced by actinomycetes isolated from rhizosphere of Sidoarjo mud region. Biocatalysis and Agricultural Biotechnology, 24, 101513.

  66. Zulekha, R., Ahmad, Z., Hussain, A., Farooqi, A., & Andleeb, S. (2019). Biomedical and environmental application of biosurfactant produced by bacterial strain Klebsiella sp. KOD36. Biomedical Engineering International Conference, pp. 2–8.

  67. Ahmad, Z., Zhang, X., Imran, M., et al. (2021). Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems. Ecotoxicology and Environmental Safety, 207, 111514.

    Article  Google Scholar 

  68. Alfaify, A. M., Mir, M. A., & Alrumman, S. A. (2022). Klebsiella oxytoca: an efficient pyrene-degrading bacterial strain isolated from petroleum-contaminated soil. Archives of Microbiology, 204(5), 1–9.

    Article  Google Scholar 

  69. Kumar, R., & De, M. (2023). Enhanced degradation of petroleum hydrocarbons by Klebsiella michiganensis RK and Acinetobacter baumannii IITG19 isolated from local soil sources. International Journal of Environmental Science and Technology, 20(12), 13387–13398. https://doi.org/10.1007/s13762-023-04790-3

  70. Nitschke, M., & Marangon, C. A. (2022). Microbial surfactants in nanotechnology: recent trends and applications. Critical Reviews in Biotechnology, 42(2), 294–310.

    Article  Google Scholar 

  71. Farias, C. B. B., Silva, A. F., Rufino, R. D., Luna, J. M., Gomes Souza, J. E., & Sarubbo, L. A. (2024). Synthesis of silver nanoparticles using a biosurfactant produced in low-costmediumas stabilizing agent. Electron JBiotechnol, 17(3), 122–125.

    Article  Google Scholar 

  72. Gomathi, M., Rajkumar, P. V., Prakasam, A., & Ravichandran, K. (2017). Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resource-Efficient Technologies, 3(3), 280–284.

    Article  Google Scholar 

  73. Chandankere, R., Chelliah, J., Subban, K., Shanadrahalli, V. C., Parvez, A., Zabed, H. M., Sharma, Y.C., & Qi, X. (2020). Pleiotropic functions and biological potentials of silver nanoparticles synthesized by an endophytic fungus. Frontiers in Bioengineering and Biotechnology, 8(95). https://doi.org/10.3389/fbioe.2020.00095

  74. Huq, M. A. (2020). Green synthesis of silver nanoparticles using Pseudoduganellaeburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. International journal of molecular sciences, 21(4), 1510. https://doi.org/10.3390/ijms21041510

  75. Palithya, S., Gaddam, S. A., Kotakadi, V. S., Penchalaneni, J., & Challagundla, V. N. (2021). Biosynthesis of silver nanoparticles using leaf extract of Decaschistia crotonifolia and its antibacterial, antioxidant, and catalytic applications. Green Chemistry Letters and Reviews, 14(1), 136–151.

    Article  Google Scholar 

  76. Ali, J., Ali, N., Jamil, S. U. U., Waseem, H., Khan, K., & Pan, G. (2017). Insight into eco-friendly fabrication of silver nanoparticles by Pseudomonas aeruginosa and its potential impacts. Journal of Environmental Chemical Engineering, 5(4), 3266–3272.

    Article  Google Scholar 

  77. Ohadi, M., Forootanfar, H., Dehghannoudeh, G., Eslaminejad, T., Ameri, A., Shakibaie, M., & Najafi, A. (2020). Biosynthesis of gold nanoparticles assisted by lipopeptide biosurfactant derived from Acinetobacter junii B6 and evaluation of its antibacterial and cytotoxic activities. BioNanoScience, 10, 899–908.

    Article  Google Scholar 

  78. Bardania, H., Mahmoudi, R., Bagheri, H., et al. (2020). Facile preparation of a novel biogenic silver-loaded Nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing. Science and Reports, 10(1), 6129.

    Article  Google Scholar 

  79. Paterlini, P., Rodriguez, C., Ledesma, A., Pereyra, J., Costa, J. S. D., Alvarez, A., & Romero, C. M. (2021). Characterization of biosynthesized silver nanoparticles from Streptomyces aqueous extract and evaluation of surface-capping proteins involved in the process. Nano-Structures & Nano-Objects, 26, 100755.

    Article  Google Scholar 

  80. Nile, S. H., Thiruvengadam, M., Wang, Y., et al. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. Jnanobiotechnol, 20(1), 254.

    Article  Google Scholar 

  81. Imtiaz, H., Shiraz, M., Mir, A. R., Siddiqui, H., & Hayat, S. (2023). Nano-priming techniques for plant physiobiochemistry and stress tolerance. Journal of Plant Growth Regulation, 42(11), 6870–6890. https://doi.org/10.1007/s00344-023-10981-6

  82. Shelar, A., Singh, A. V., Maharjan, R. S., et al. (2021). Sustainable agriculture through multidisciplinary seed nanopriming: prospects of opportunities and challenges. Cells, 10(9), 2428.

    Article  Google Scholar 

  83. Jhanzab, H. M., Razzaq, A., Bibi, Y., et al. (2019). Proteomic analysis of the effect of inorganic and organic chemicals on silver nanoparticles in wheat. International Journal of Molecular Sciences, 20(4), 825.

    Article  Google Scholar 

  84. Gao, M., Chang, J., Wang, Z., Zhang, H., & Wang, T. (2023). Advances in transport and toxicity of nanoparticles in plants. Journal of Nanbiotechnology, 21(1), 1–16.

    Google Scholar 

  85. Prerna, D. I., Govindaraju, K., Tamilselvan, S., Kannan, M., Vasantharaja, R., Chaturvedi, S., & Shkolnik, D. (2021). Influence of nanoscale micro-nutrient α-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays). Plant Physiology and Biochemistry, 162, 564–580.

    Article  Google Scholar 

  86. Xu, L., Zhu, Z., & Sun, D. W. (2021). Bioinspired nanomodification strategies: moving from chemical-based agrosystems to sustainable agriculture. ACS Nano, 15(8), 655–12686.

    Article  Google Scholar 

  87. Khan, M. N., Li, Y., Khan, Z., et al. (2021). Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. Journal of Nanobiotechnology, 19, 1–19.

    Article  Google Scholar 

  88. Anusuya, S., & Banu, K. N. (2016). Silver-chitosan nanoparticles induced biochemical variations of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology, 8, 39–44. https://doi.org/10.1016/j.bcab.2016.08.005

  89. Abdel-Aziz, H. M., & Rizwan, M. (2019). Chemically synthesized silver nanoparticles induced physio-chemical and chloroplast ultrastructural changes in broad bean seedlings. Chemosphere, 235, 1066–1072. https://doi.org/10.1016/j.chemosphere.2019.07.035

  90. Das, I., Gogoi, B., Sharma, B., & Borah, D. (2022). Role of metal-nanoparticles in farming practices: an insight. 3 Biotech, 12(11), 294. https://doi.org/10.1007/s13205-022-03361-6

  91. Sobhani, Z., Panneerselvan, L., Fang, C., Naidu, R., & Megharaj, M. (2021). Chronic and transgenerational effects of polystyrene microplastics at environmentally relevant concentrations in earthworms (Eisenia fetida). Environmental Toxicology and Chemistry, 40(8), 2240–2246.

    Article  Google Scholar 

  92. Al-Maliki, S., Al-Taey, D. K. A., & Al-Mammori, H. Z. (2021). Earthworms and eco-consequences: considerations to soil biological indicators and plant function: a review. Acta Ecologica Sinica, 41(6), 512–523.

    Article  Google Scholar 

  93. Haeba, M., Kuta, J., Arhouma, Z. K., & Elwerfalli, H. M. A. (2013). Earthworm as bioindicator of soil pollution around Benghazi City, Libya. J Environ Anal Toxicol, 3(6). https://doi.org/10.4172/2161-0525.1000189

  94. Junior, S. F. S., Mannarino, C. F., Bila, D. M., Parente, E. T., Correia, F. V., & Saggioro, E. M. (2021). Lethal and long-term effects of landfill leachate on Eisenia andrei earthworms: behavior, reproduction and risk assessment. J EnvironManag, 285, 112029.

    Google Scholar 

  95. Jeyaprakasam, A., Muniyandi, B., James, A. J. P., Karmegam, N., & Ponnuchamy, K. (2021). Assessment of earthworm diversity and pesticide toxicity in Eudrilus Eugeniae. Environ ChemEcotoxicol, 3, 23–30.

    Google Scholar 

  96. Angmo, D., Dutta, R., Kumar, S. I., & Sharma, A. (2020). Natural biological treatment of effluent and sludges to combat the burden of waste. Earthworm assisted remediation of effluents and wastes, 107–122. https://doi.org/10.1007/978-981-15-4522-1_7

Download references

Funding

DBT-ALSBT Hub (Assam), Grant no. 99/DRV/341/2022–23/Microgrants/5032–40, Dated: 31/10/2022.

Author information

Authors and Affiliations

Authors

Contributions

Indukalpa Das: She performed all the laboratory experiments, generated the data, and also drafted the manuscript in its initial form. Debajit Borah: He supervised the entire research work, helped in performing the laboratory experiments, and drafted the final version of the manuscript. Pankaj Bharali: Helped in performing SEM, TEM, and DTA-TGA analysis. Pronami Gogoi: Helped in performing XRD, and FTIR analysis. Archana Borah: Helped in performing histological analysis.

Corresponding author

Correspondence to Debajit Borah.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, I., Bharali, P., Gogoi, P. et al. Green Synthesis of Silver Nanoparticles Using Microbial Biosurfactant Produced by a Newly Isolated Klebsiella sp. Strain RGUDBI03 Through a Single Step Method and Exploring its Role in Enhancing the Chickpea and Rice Seed Germination. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01444-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01444-7

Keywords

Navigation