Skip to main content
Log in

Extracellular Biosynthesis Silver Nanoparticles Using Streptomyces spp. and Evaluating Its Effects Against Important Tomato Pathogens and Cancer Cells

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Tomato (Solanum lycopersicum L.) holds significant importance as a primary vegetable crop globally. In this research, the extracellular green-synthesis of silver nanoparticles was accomplished by using some Gram positive bacteria. Three isolates including KM59, SM88, and KM93 exhibited the highest nanoparticle biosynthesis activity. The isolates were identified according to colony morphology and the 16S rRNA gene sequence identities, as Streptomyces spp. The obtained AgNPs were characterized by TEM and exhibited various shapes, including hexagonal, pentagonal, spherical, and triangular. The MIC for Ralstonia solanacearum was determined to be 25, 6.25, and 25 µg/mL for the AgNPs93, AgNPs88, and AgNPs59, respectively. The MIC of AgNPs93, AgNPs88, and AgNPs59 against Xanthomonas campestris was assessed at concentrations of 25, 12.5, and 50 µg/mL, respectively. In the case of Alternaia alternata, the MIC for AgNPs93 and AgNPs59 was found to be 50 µg/mL, while for AgNPs88, it was 25 µg/mL. Furthermore, the MIC of AgNPs88 against Rhizoctonia solani was determined to be 12.5 µg/mL, whereas for AgNPs93, it was 25 µg/mL, and for AgNPs59, it was 50 µg/mL. Disease index was reduced (AgNPs88 demonstrated the most potent inhibitory effect, whereas AgNPs59 displayed the least inhibitory effect) when tomato plants inoculated with fungal and bacterial pathogens treated with the AgNPs at MIC concentrations. The cytotoxicity of AgNPs on the B16F10 cancer cell lines determined by the means of MTT assay. Biosynthesis of AgNPs using Actinobacteria is an eco-friendly process. In agriculture, medical sciences, and industry, process optimization can become a valuable technology for mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Chakraborty, N., Banerjee, J., Chakraborty, P., et al. (2022). Green synthesis of copper/copper oxide nanoparticles and their applications: A review. Green Chemistry Letters and Reviews, 15, 187–215.

    Article  Google Scholar 

  2. Jahan, I., Erci, F., & Isildak, I. (2019). Microwave-assisted green synthesis of non-cytotoxic silver nanoparticles using the aqueous extract of Rosa santana (rose) petals and their antimicrobial activity. Analytical Letters, 52, 1860–1873.

    Article  Google Scholar 

  3. Soltani-Nejad, M., Samandari-Najafabadi, N., Aghighi, S., et al. (2023). Application of biosynthesized silver nanoparticles from oak fruit exudates against Pectobacterium carotovorum subsp. carotovorum causing postharvest soft rot disease in vegetables. Agronomy, 13, 1624–1624.

    Article  Google Scholar 

  4. Priyadarshini, S., Sonsudin, F., Mainal, A., et al. (2021). Phytosynthesis of biohybrid nano-silver anchors enhanced size dependent photocatalytic, antibacterial, anticancer properties and cytocompatibility. Process Biochemistry, 101, 59–71.

    Article  Google Scholar 

  5. Noorbazargan, H., Amintehrani, S., Dolatabadi, A., et al. (2021). Anti-cancer & anti-metastasis properties of bioorganic-capped silver nanoparticles fabricated from Juniperus chinensis extract against lung cancer cells. AMB Express, 11, 61.

    Article  Google Scholar 

  6. Muthukrishnan, S., Kumar, T. S., & Rao, M. V. (2017). Anticancer activity of biogenic nanosilver and its toxicity assessment on Artemia salina — Evaluation of mortality, accumulation and elimination: An experimental report. Journal of Environmental Chemical Engineering, 5, 1685–1695.

    Article  Google Scholar 

  7. Sahoo, R. K., Tamuli, K. J., Narzary, B., et al. (2020). Clerodendrum viscosum Vent leaf extract supported nanosilver particles: Characterization, antiplasmodial and anticancer activity. Chemical Physics Letters, 738, 136893.

    Article  Google Scholar 

  8. Karan, T., Gönülalan, Z., Erenler, R., et al. (2024). Green synthesis of silver nanoparticles using Sambucus ebulus leaves extract: Characterization, quantitative analysis of bioactive molecules, antioxidant and antibacterial activities. Journal of Molecular Structure, 1296, 136836–136836.

    Article  Google Scholar 

  9. Elazab, N. T., Zakaria, H. H. S., & El-Zahed, M. M. (2024). Green synthesis of silver nanoparticles using Cakile maritima seed extract: Molecular, antifungal and physiological studies. Physiological and Molecular Plant Pathology, 129, 102183–102183.

    Article  Google Scholar 

  10. Wang, D., Xue, B., Wang, L., et al. (2021). Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Science Report, 11, 10356.

    Article  Google Scholar 

  11. Grozdanov, A., & Paunović, P. (2021). Functionalized nanoparticles in facemasks for protection of Covid 19. Material Science & Engineering International Journal, 5, 142–146.

    Article  Google Scholar 

  12. Meher, M. K., & Poluri, K. M. (2021). Anticoagulation and antibacterial properties of heparinized nanosilver with different morphologies. Carbohydrate Polymers, 266, 118124–118124.

    Article  Google Scholar 

  13. Odatsu, T., Kuroshima, S., Sato, M., et al. (2020). Antibacterial properties of nano-Ag coating on healing abutment: An in vitro and clinical study. Antibiotics, 9, 347–347.

    Article  Google Scholar 

  14. Soltani-Nejad, M., Samandari-Najafabadi, N., Aghighi, S., & Zargar, M. (2023). Phytosynthesis of silver nanoparticles by Paulownia fortunei fruit exudates and its application against Fusarium sp. causing dry rot postharvest diseases of banana. Biocatalysis and Agricultural Biotechnology, 54, 102949–102949.

    Article  Google Scholar 

  15. Gutierrez, L., Schmid, A., Zaouri, N., et al. (2020). Colloidal stability of capped silver nanoparticles in natural organic matter-containing electrolyte solutions. NanoImpact, 19, 100242.

    Article  Google Scholar 

  16. Iezzi, L., Vilardi, G., Saviano, G., & Stoller, M. (2022). On the equipment design of a spinning disk reactor for the production of novel nano silver in amorphous zeolite particles. Chemical Engineering Journal, 449, 137864–137864.

    Article  Google Scholar 

  17. Kowalska-Góralska, M., Senze, M., Polechoński, R., et al. (2015). Biocidal properties of silver-nanoparticles in water environments. Polish Journal of Environmental Studies, 24, 1641–1647.

    Article  Google Scholar 

  18. Yaradoddi, J. S., Banapurmath, N. R., Kontro, M. H., et al. (2021). Recent trends of actinomycetes in nanotechnology, actinobacteria Rhizosphere Biology (pp. 199–212). Springer.

    Google Scholar 

  19. Vishnupriya, C., Mohamedrizwan, K., Arya, P. R., et al. (2024). Evaluation of heavy metal removal and antibiofilm efficiency of biologically synthesized chitosan-silver nano-bio composite by a soil actinobacterium Glutamicibacter uratoxydans VRAK 24. International Journal of Biological Macromolecules, 255, 128032–128032.

    Article  Google Scholar 

  20. Ranjitha, V. R., & Rai, V. R. (2017). Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity. 3 Biotech, 7, 299.

    Article  Google Scholar 

  21. Mawang, C. I., Azman, A. S., Fuad, A. S. M., et al. (2021). Actinobacteria: An eco-friendly and promising technology for the bioaugmentation of contaminants. Biotechnology Reports, 32, e00679.

    Article  Google Scholar 

  22. Jo, H.-G., Adidjaja, J. J., Kim, D. K., et al. (2022). Comparative genomic analysis of Streptomyces rapamycinicus NRRL 5491 and its mutant overproducing rapamycin. Science Report, 12, 10302.

    Article  Google Scholar 

  23. Santos-Beneit, F., Ceniceros, A., Nikolaou, A., et al. (2022). Identification of antimicrobial compounds in two Streptomyces sp. strains isolated from beehives. Frontiers in Microbiology, 13,742168.

  24. Al Raish, S. M., Saeed, E. E., Alyafei, D. M., et al. (2021). Evaluation of Streptomycete actinobacterial isolates as biocontrol agents against royal poinciana stem canker disease caused by the fungal pathogen Neoscytalidium dimidiatum. Biolgical Control, 164, 104783.

    Article  Google Scholar 

  25. Soltani-Nejad, M., Bonjar, G. H. S., Khatami, M., et al. (2017). In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET Nanobiotechnolgy, 11, 236–240.

    Article  Google Scholar 

  26. Kumar, S. P., Balachandran, C., Duraipandiyan, V., et al. (2014). Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Applied Nanoscience, 5, 169–180.

    Article  Google Scholar 

  27. Soltani-Nejad, M., Khatami, M., & Bonjar, G. H. (2015). Streptomyces somaliensis mediated green synthesis of silver nanoparticles. Nanomedicine Journal, 2, 217–222.

    Google Scholar 

  28. Sehgal, N., Naresh, G., & Kumari, A. (2021). Latest developments and applications of nanotechnology in agriculture sector: A review. Agricultural Reviews, 44, 275–288.

    Google Scholar 

  29. Rani, N., Duhan, A., Pal, A., et al. (2023). Are nano-pesticides really meant for cleaner production? An overview on recent developments, benefits, environmental hazards and future prospectives. Journal of Cleaner Production, 411, 137232.

    Article  Google Scholar 

  30. Pandey, A. K., Kumar, A., Dinesh, K., Varshney, R., & Dutta, P. (2022). The hunt for beneficial fungi for tomato crop improvement — Advantages and perspectives. Plant Stress, 6, 100110–100110.

    Article  Google Scholar 

  31. Kim, S., Hur, O. S., Ro, N. Y., et al. (2016). Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedling stage. Plant Pathology, 32, 58–64.

    Article  Google Scholar 

  32. Kokaeva, L. Y., Belosokhov, A. F., Doeva, L. Y., et al. (2017). Distribution of Alternaria species on blighted potato and tomato leaves in Russia. Journal of Plant Diseases and Protection, 125, 205–212.

    Google Scholar 

  33. Kim, N. H., Choi, H. W., & Hwang, B. K. (2010). Xanthomonas campestris pv. vesicatoria effector AvrBsT induces cell death in pepper, but suppresses defense responses in tomato. Molecular Plant-Microbe Interactions, 23, 1069–1082.

    Article  Google Scholar 

  34. Agarwal, H., Dowarah, B., Baruah, P. M., et al. (2020). Endophytes from Gnetum gnemon L. can protect seedlings against the infection of phytopathogenic bacterium Ralstonia solanacearum as well as promote plant growth in tomato. Microbiological Research, 238, 126503.

    Article  Google Scholar 

  35. Izadiyan, M., & Taghavi, S. M. (2011). Diversity of Iranian isolates of Ralstonia solanacearum. Phytopathologia Mediterranea, 50, 236–244.

    Google Scholar 

  36. Daroodi, Z., Taheri, P., & Tarighi, S. (2021). Direct antagonistic activity and tomato resistance induction of the endophytic fungus Acrophialophora jodhpurensis against Rhizoctonia solani. Biological Control, 160, 104696.

    Article  Google Scholar 

  37. Loqman, A., Outammassine, A., El Garraoui, O., et al. (2022). Streptomyces thinghirensis sp. nov. as a promising path for green synthesis of silver nanoparticles: High eradication of multidrug-resistant bacteria and catalytic activity. Journal of Environmental Chemical Engineering, 10, 108889–108889.

    Article  Google Scholar 

  38. Geissel, F. J., Platania, V., Gogos, A., et al. (2022). Antibiofilm activity of nanosilver coatings against Staphylococcus aureus. Journal of Colloid and Interface Science, 608, 3141–3150.

    Article  Google Scholar 

  39. Shanthi, S., Jayaseelan, D. B., Velusamy, P., et al. (2016). Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microbial Pathogenesis, 93, 70–77.

    Article  Google Scholar 

  40. Soltanzadeh, M., Soltani-Nejad, M., & Bonjar, G. H. H. (2016). Application of soil-borne actinomycetes for biological control against Fusarium wilt of chickpea (Cicer arietinum ) caused by Fusarium solani fsp pisi. Journal of Phytopathology, 164, 967–978.

    Article  Google Scholar 

  41. Akhlaghi, M., Tarighi, S., & Taheri, P. (2019). Effects of plant essential oils on growth and virulence factors of Erwinia amylovora. Plant Pathololgy Journal, 102, 409–419.

    Article  Google Scholar 

  42. Plodpai, P., Chuenchitt, S., Petcharat, V., et al. (2013). Anti-Rhizoctonia solani activity by Desmos chinensis extracts and its mechanism of action. Crop Protection, 43, 65–71.

    Article  Google Scholar 

  43. Soltani-Nejad, M., Samandari-Najafabadi, N., Aghighi, S., et al. (2022). Evaluation of Phoma sp. biomass as an endophytic fungus for synthesis of extracellular gold nanoparticles with antibacterial and antifungal properties. Molecules, 2, 1181.

    Article  Google Scholar 

  44. Mirzaei-Najafgholi, H., Tarighi, S., Golmohammadi, M., et al. (2017). The effect of citrus essential oils and their constituents on growth of Xanthomonas citri subsp. citri. Molecules, 22(4), 591.

    Article  Google Scholar 

  45. Nassimi, Z., Taheri, P., & Tarighi, S. (2019). Farnesol altered morphogenesis and induced oxidative burst–related responses in Rhizoctonia solani AG1-IA. Mycologia, 111(3), 359–370.

    Article  Google Scholar 

  46. Ghazal, S., Khandannasab, N., Hosseini, H. A., et al. (2021). Green synthesis of copper-doped nickel oxide nanoparticles using okra plant extract for the evaluation of their cytotoxicity and photocatalytic properties. Ceramic International, 47, 27165–27176.

    Article  Google Scholar 

  47. Taheri, P., & Tarighi, S. (2010). Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology, 167, 201–208.

    Article  Google Scholar 

  48. Habe, I. (2018). An In vitro assay method for resistance to bacterial wilt (Ralstonia solanacearum) in potato. American Journal of Potato Research, 95, 311–316.

    Article  Google Scholar 

  49. Devi, T. A., Sivaraman, R. M., Thavamani, S. S., et al. (2022). Green synthesis of plasmonic nanoparticles using Sargassum ilicifolium and application in photocatalytic degradation of cationic dyes. Environmental Research, 208, 112642.

    Article  Google Scholar 

  50. Joachin, J., Kritzell, C., Lagueux, E., et al. (2023). Climate change and plant-microbe interactions: Water-availability influences the effective specialization of a fungal pathogen. Fungal Ecology, 66, 101286–101286.

    Article  Google Scholar 

  51. Kim, D. Y., Patel, S., Rasool, K., et al. (2024). Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. Science of The Total Environment, 908, 168318–168318.

    Article  Google Scholar 

  52. Klein, W., Ismail, E., Maboza, E., et al. (2023). Green-synthesized silver nanoparticles: Antifungal and cytotoxic potential for further dental applications. Journal of Functional Biomaterials, 14, 379–379.

    Article  Google Scholar 

  53. Shuaib, U., Hussain, T., Ahmad, R., et al. (2020). Plasma-liquid synthesis of silver nanoparticles and their antibacterial and antifungal applications. Materials Research Express, 7, 035015.

    Article  Google Scholar 

  54. Nadhe, S. B., Singh, R. P., Wadhwani, S. A., & Chopade, B. A. (2019). Acinetobacter sp. mediated synthesis of AgNPs, its optimization, characterization and synergistic antifungal activity against C. albicans. Journal of Applied Microbiology, 127, 445–458.

    Article  Google Scholar 

  55. Gibała, A., Żeliszewska, P., Gosiewski, T., et al. (2021). Antibacterial and antifungal properties of silver nanoparticles effect of a surface stabilizing agent. Biomolecules, 11, 1481.

    Article  Google Scholar 

  56. Girgin, A., Akbıyık, H., Zaman, B. T., et al. (2023). Colorimetric sensor based AgNPs for the detection of cyanide using UV-Vis spectrophotometry. ChemistrySelect, 8, 202301663.

    Article  Google Scholar 

  57. Saeed, S., Iqbal, A., & Ashraf, M. A. (2020). Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environmental Science and Pollution Research, 27, 37347–37356.

    Article  Google Scholar 

  58. Madbouly, A. K., Abdel-Aziz, M. S., & Abdel-Wahhab, M. A. (2017). Biosynthesis of nanosilver using Chaetomium globosum and its application to control Fusarium wilt of tomato in the greenhouse. IET Nanobiotechnology, 11, 702–708.

    Article  Google Scholar 

  59. Tarighi, S., & Soltani-Nejad, M. (2023). Ecofriendly fabrication of silver nanoparticles using quince petal extract and its antibacterial properties against fire blight disease. Journal of Natural Pesticide Research, 4, 100026–100026.

    Article  Google Scholar 

  60. Mechouche, M. S., Merouane, F., Messaad, C. E. H., et al. (2022). Biosynthesis, characterization, and evaluation of antibacterial and photocatalytic methylene blue dye degradation activities of silver nanoparticles from Streptomyces tuirus strain. Environmental Research, 204, 112360.

    Article  Google Scholar 

  61. Hamed, A. A., Kabary, H., Khedr, M., et al. (2020). Antibiofilm, antimicrobial and cytotoxic activity of extracellular green-synthesized silver nanoparticles by two marine-derived actinomycete. RSC Advance, 10, 10361–10367.

    Article  Google Scholar 

  62. Mabrouk, M., Elkhooly, T. A., & Amer, S. K. (2021). Actinomycete strain type determines the monodispersity and antibacterial properties of biogenically synthesized silver nanoparticles. Journal of Genetic Engineering and Biotechnology, 16, 1.

    Google Scholar 

  63. Yakoup, A. Y., Kamel, A. G., Elbermawy, Y., et al. (2024). Characterization, antibacterial, and cytotoxic activities of silver nanoparticles using the whole biofilm layer as a macromolecule in biosynthesis. Science Report, 14, 364.

    Article  Google Scholar 

  64. Ntemogiannis, D., Tsarmpopoulou, M., Stamatelatos, A., et al. (2024). ZnO matrices as a platform for tunable localized surface plasmon resonances of silver nanoparticles. Coatings, 14, 69–69.

    Article  Google Scholar 

  65. Mehta, B. K., Chhajlani, M., & Shrivastava, B. D. (2017). Green synthesis of silver nanoparticles and their characterization by XRD. Journal of Physics: Conference Series, 836, 012050.

    Google Scholar 

  66. Hemlata, M. P. R., Singh, A. P., & Tejavath, K. K. (2020). Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega, 5, 5520–5528.

    Article  Google Scholar 

  67. Faghihzadeh, F., Anaya, N. M., Schifman, L. A., et al. (2016). Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnology for Environmental Engineering, 1, 1.

    Article  Google Scholar 

  68. Khatami, M., Soltani-Nejad, M., Salari, S., & Ghasemi, P. (2016). Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotechnology, 10, 237–243.

    Article  Google Scholar 

  69. Karthik, C., Suresh, S., Mirulalini, S., et al. (2020). A FTIR approach of green synthesized silver nanoparticles by Ocimum sanctum and Ocimum gratissimum on mung bean seeds. Inorganic and Nano-Metal Chemistry, 50, 606–612.

    Article  Google Scholar 

  70. Różalska, B., Sadowska, B., Budzyńska, A., et al. (2018). Biogenic nanosilver synthesized in Metarhizium robertsii waste mycelium extract — As a modulator of Candida albicans morphogenesis, membrane lipidome and biofilm. PLoS ONE, 13, e0194254.

    Article  Google Scholar 

  71. Yan, X., He, B., Liu, L., et al. (2018). Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: Proteomics approach. Metallomics, 10, 557–564.

    Article  Google Scholar 

  72. Kumari, M., Klodzinska, S. N., & Chifiriuc, M.C. (2023). Editorial: Microbe-nanoparticle interactions: A mechanistic approach. Frontiers in Microbiology. 14, 1273364.

  73. Kapustová, M., Puškárová, A., Bučková, M., et al. (2021). Biofilm inhibition by biocompatible poly (ε-caprolactone) nanocapsules loaded with essential oils and their cyto/genotoxicity to human keratinocyte cell line. International Journal of Pharmaceutics, 606, 120846.

    Article  Google Scholar 

  74. Hashem, A. H., Saied, E., Amin, B. H., et al. (2022). Antifungal activity of biosynthesized silver nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. Journal of Functional Biomaterials, 13, 242.

    Article  Google Scholar 

  75. Ballottin, D., Fulaz, S., Caroline, M., et al. (2016). Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Research Letters, 11, 1.

    Article  Google Scholar 

  76. Kędziora, A., Speruda, M., Krzyżewska, E., et al. (2018). Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. International Journal of Molecular Sciences, 19, 444.

    Article  Google Scholar 

  77. Tian, Y., Ying, C., Zhang, L., et al. (2024). Unveiling the inhibition of chlortetracycline photodegradation and the increase of toxicity when coexisting with silver nanoparticles. Science of the Total Environment, 912, 168443–168443.

    Article  Google Scholar 

  78. Flores-López, L. Z., Espinoza-Gómez, H., & Somanathan, R. (2018). Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. Journal of Applied Toxicology, 39, 16–26.

    Article  Google Scholar 

  79. Hekmat, A., Saboury, A. A., & Divsalar, A. (2012). The effects of silver nanoparticles and doxorubicin combination on DNA structure and its antiproliferative effect against T47D and MCF7 cell lines. Journal of Biomedical Nanotechnology, 8, 968–982.

    Article  Google Scholar 

  80. Wypij, M., Jędrzejewski, T., Trzcińska-Wencel, J., et al. (2021). Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of Surface-attached proteins. Frontiers in Microbiology 12, 632505.

  81. Tutku, T. (2024). Synthesis and characterization of silver nanoparticles loaded with carboplatin as a potential antimicrobial and cancer therapy. Cancer Nanotechnology, 15, 1–14

  82. Zhang, J., Huang, Y., Pu, R., et al. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, 104943.

    Article  Google Scholar 

Download references

Funding

We received financial support from the Ferdowsi University of Mashhad, Iran, for this research with grant number 3/53111.

Author information

Authors and Affiliations

Authors

Contributions

M.S.N. and S.T. wrote the main manuscript text and S.T. prepared fund for it. All authors reviewed the manuscript.

Corresponding author

Correspondence to Saeed Tarighi.

Ethics declarations

Competing Interests

The authors declare no conflict of interest.

Research Involving Humans and Animals Statement

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4056 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejad, M.S., Tarighi, S., Taheri, P. et al. Extracellular Biosynthesis Silver Nanoparticles Using Streptomyces spp. and Evaluating Its Effects Against Important Tomato Pathogens and Cancer Cells. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01443-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01443-8

Keywords

Navigation