Skip to main content
Log in

The Impact of Marangoni Convection on Carbon Nanotube Blood Base Hybrid Nanofluid with Thermal Radiation Viscous Dissipation and Couple Stress, Analytical Study

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The current study investigates the two-dimensional incompressible viscous flow of CNTs (carbon nanotube) blood base hybrid nanofluids, both multi wall and single wall, with the considered impact of MHD, couple stress, Marangoni convection, thermal radiation and viscous dissipation. Appropriate similarity transformation is used to convert the governing flow problem partial differential equation to dimensionless nonlinear ordinary differential equations. We solve this dimensionless coupled equation, one for temperature and one for velocity, using the homotopy analysis method (HAM). The flow characteristics, such as temperature and velocity profiles, are studied and simulated using a physical description in response to changes in developing factors. Based on the data presented, it can be concluded that CNT is a more dependable material for industrial and technological applications due to its superior heat transfer properties. For hybrid nanofluids, a decrease in the temperature curve is observed with increasing prandtl number and enhancement with the increasing value of thermal radiation, viscous dissipation and temperature ratio factors. By enhancing the volume friction parameter, coupling stress parameter and magnetic parameter increase, the hybrid nanofluid velocity curve falls. This paper also investigates the blood-based hybrid nanofluid’s thermal performance as measured by the local skin friction coefficient and Nusselt number. The major outcome of this research work is to increase the effectiveness of heat exchangers, cooling systems and thermal management equipment. It improved heat transfer capability results from the base fluid’s increased thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Braescu, L., & Duffar, T. (2008). Effect of Buoyancy and Marangoni forces on the dopant distribution in a single crystal fiber grown from the melt by edge-defined film-fed growth (EFG) method. Journal of Crystal Growth, 310, 484–489.

    Article  Google Scholar 

  2. Hashim, I., & Arifin, N. M. (2003). Oscillatory Marangoni convection in a conducting fluid layer with a deformable free surface in the presence of a vertical magnetic field. Acta Mechanica, 164, 199–215.

    Article  Google Scholar 

  3. Hashim, I., & Wilson, S. K. (1999). The effect of a uniform vertical magnetic field on the onset of oscillatory Marangoni convection in a horizontal layer of conducting fluid. Acta Mechanica, 132, 129–146.

    Article  Google Scholar 

  4. Hashim, I., & Wilson, S. K. (1999). The effect of a uniform vertical magnetic field on the linear growth rates of steady Marangoni convection in a horizontal layer of conducting fluid. International Journal of Heat and Mass Transfer, 42, 525.

    Article  Google Scholar 

  5. Hossain, M. A., Hafiz, M. Z., & Rees, D. A. S. (2005). Buoyancy and thermocapillary driven convection flow of an electrically conducting fluid in an enclosure with heat generation. International Journal of Thermal Sciences, 44, 676–684.

    Article  Google Scholar 

  6. Nield, D. A. (1966). Surface tension and Buoyancy effects in cellular convection of an electrically conducting liquid in a magnetic field. Zeitschrift für Angewandte Mathematik und Mechanik, 17, 131–139.

    Article  Google Scholar 

  7. Scriven, L. E., & Sterling, C. V. (1964). On cellular convection driven by surface tension gradients: Effect of mean surface tension and surface viscosity. Journal of Fluid Mechanics, 19, 321.

    Article  MathSciNet  Google Scholar 

  8. Takashima, M. (1981). Surface tension driven instability in horizontal liquid layer with deformable free surface. I. Steady Convection. Journal of the Physical Society of Japan, 50, 2745–2750.

    Article  Google Scholar 

  9. Wilson, S. K. (1993). The effect of a uniform magnetic field on the onset of steady Benard-Marangoni convection in a layer of conducting fluid. Journal of Engineering Mathematics, 27, 161–188.

    Article  Google Scholar 

  10. Wilson, S. K. (1993). The effect of a uniform magnetic field on the onset of Marangoni convection in a layer of conducting fluid. The Quarterly Journal of Mechanics and Applied Mathematics, 46, 211–248.

    Article  MathSciNet  Google Scholar 

  11. Wilson, S. K. (1994). The effect of a uniform magnetic field on the onset of steady Marangoni convection in a layer of conducting fluid with a prescribed heat flux at its lower boundary. Physics of Fluids, 6, 3591–3600.

    Article  MathSciNet  Google Scholar 

  12. Rehman, A., & Khan, W. (2022). Influence of Marangoni convection, solar radiation, and viscous dissipation on bioconvection couple stress flow of hybrid nanofluid over a shrinking surface. Frontiers in Materials, 9, 518.

    Article  Google Scholar 

  13. Rehman, A., & Salleh, Z. (2021). Influence of Marangoni convection on magnetohydrodynamic viscous dissipation and heat transfer on hybrid nanofluids in a rotating system among two surfaces. Mathematics, 9(18), 2242.

    Article  Google Scholar 

  14. Rehman, A., Salleh, Z., & Gul, T. (2019). The impact of Marangoni convection, magnetic field and viscous dissipation on the thin film unsteady flow of go-eg/go-w nanofluids over an extending sheet. JP Journal of Heat and Mass Transfer, 18, 477–496.

    Article  Google Scholar 

  15. Rehman, A., Gul, T., Salleh, Z., Mukhtar, S., Hussain, F., Nisar, K. S., & Kumam, P. (2019). Effect of the Marangoni convection in the unsteady thin film spray of CNT nanofluids. Processes, 7(6), 392.

    Article  Google Scholar 

  16. Rehman, A., Jan, R., Aloqaily, A., & Mlaiki, N. (2023). Scientific exploring of marangoni convection in stagnation point flow of blood-based carbon nanotubes nanofluid over an unsteady stretching surface. International Journal of Thermofluids, 20, 100470.

    Article  Google Scholar 

  17. Rehman, A., Khun, M. C., Alsubaie, A. S. A., & Inc, M. (2023). Influence of Marangoni convection, viscous dissipation, and variable fluid viscosity of nanofluid flow on stretching surface analytical analysis. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 104, e202300413. https://doi.org/10.1002/zamm.202300413

    Article  MathSciNet  Google Scholar 

  18. Sidik, N. A. C., Jamil, M. M., Japar, W. M. A. A., & Adamu, I. M. (2017). A review on preparation methods, stability and applications of hybrid nanofluids. Renewable and Sustainable Energy Reviews, 80, 1112–1122.

    Article  Google Scholar 

  19. Sarkar, J., Ghosh, P., & Adil, A. (2015). A review on hybrid nanofuids: Recent research, development and applications. Renewable and Sustainable Energy Reviews, 43, 164–177.

    Article  Google Scholar 

  20. Das, P. K. (2017). A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. Journal of Molecular Liquids, 240, 420–446.

    Article  Google Scholar 

  21. Ghadikolaei, S., Hosseinzadeh, K., Hatami, M., & Ganji, D. (2018). Mhd boundary layer analysis for micropolar dusty fluid containing hybrid nanoparticles (cu-al2o3) over a porous medium. Journal of Molecular Liquids, 268, 813–823.

    Article  Google Scholar 

  22. Chamkha, A. J., Dogonchi, A., & Ganji, D. (2019). Magneto-hydrodynamic fow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and joule heating. AIP Advances, 9, 025103.

    Article  Google Scholar 

  23. Waini, I., Ishak, A., & Pop, I. (2019). Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid. Physica Scripta, 94, 105219.

    Article  Google Scholar 

  24. Waini, I., Ishak, A., & Pop, I. (2019). Hybrid nanofluid fow and heat transfer past a vertical thin needle with prescribed surface heat flux. International Journal of Numerical Methods for Heat & Fluid Flow, 29, 4875–4894.

    Article  Google Scholar 

  25. Sun, B., Zhang, Y., Yang, D., & Li, H. (2019). Experimental study on heat transfer characteristics of hybrid nanofluid impinging jets. Applied Thermal Engineering, 151, 556–566.

    Article  Google Scholar 

  26. Ma, Y., Mohebbi, R., Rashidi, M., & Yang, Z. (2019). Mhd convective heat transfer of ag-mgo/water hybrid nanofluid in a channel with active heaters and coolers. International Journal of Heat and Mass Transfer, 137, 714–726.

    Article  Google Scholar 

  27. Waini, I., Ishak, A., & Pop, I. (2019). Unsteady fow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International Journal of Heat and Mass Transfer, 136, 288–297.

    Article  Google Scholar 

  28. Esfe, M. H., Bahiraei, M., Hajmohammad, M. H., & Afrand, M. (2017). Rheological characteristics of MgO/oil nanolubricants: Experimental study and neural network modeling. International Communications in Heat and Mass Transfer, 86, 245–252.

    Article  Google Scholar 

  29. Esfe, M. H., Esfandeh, S., Amiri, M. K., & Afrand, M. (2019). A novel applicable experimental study on the thermal behavior of SWCNTs (60%)-MgO (40%)/EG hybrid nanofluid by focusing on the thermal conductivity. Powder Technology, 342, 998–1007.

    Article  Google Scholar 

  30. Karimipour, A., Bahrami, D., Kalbasi, R., & Marjani, A. (2021). Diminishing vortex intensity and improving heat transfer by applying magnetic field on an injectable slip microchannel containing FMWNT/water nanofluid. J. Term. Anal. Calorim., 144, 2235–2246.

    Article  Google Scholar 

  31. Nguyen, Q., Bahrami, D., Kalbasi, R. & Karimipour, A. (2020) Functionalized multi-walled carbon nanotubes nanoparticles dispersed in water through an magneto hydro dynamic nonsmooth duct equipped with sinusoidal-wavy wall: Diminishing vortex intensity via nonlinear Navier–Stokes equations. Mathematical Methods in the Applied Sciences. https://onlinelibrary.wiley.com/doi/10.1002/mma.6528

  32. Khetib, Y., et al. (2021). Effects of different wall shapes on thermal-hydraulic characteristics of different channels filled with water based graphite-SiO2 hybrid nanofluid. Processes, 9, 1253.

    Article  Google Scholar 

  33. Hafeez, M., et al. (2020). Jefery-Hamel fow of hybrid nanofluids in convergent and divergent channels with heat transfer characteristics. Applied Nanoscience, 10, 5459–5468.

    Article  Google Scholar 

  34. Safa, M., et al. (2020). Selection of the most influential parameters on vectorial crystal growth of highly oriented vertically aligned carbon nanotubes by adaptive neuro-fuzzy technique. International Journal of Hydromechatronics, 3, 238–251.

    Article  Google Scholar 

  35. Verma, L., & Meher, R. (2022). Effect of heat transfer on Jefery-Hamel cu/ag-water nanofluid fow with uncertain volume fraction using the double parametric fuzzy homotopy analysis method. The European Physical Journal - Plus, 137, 1–20.

    Article  Google Scholar 

  36. Wang, F., Shah, F., Khan, M. I., Alwetaishi, M., Malik, M. Y., & Galal, A. M. (2022). Insight into the relationship between the Fourier’s law of heat conduction and Fick’s law over a Riga device: Fourth grade analysis. Journal of the Indian Chemical Society, 99(7), 100502.

    Article  Google Scholar 

  37. Shah, S. A. A., Ahammad, N. A., Ali, B., Guedri, K., Awan, A. U., Gamaoun, F., & Tag-ElDin, E. M. (2022). Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid flow: A case of stretching cylinder. International Communications in Heat and Mass Transfer, 137, 106299.

    Article  Google Scholar 

  38. Tayyab, M., Siddique, I., Jarad, F., Ashraf, M. K., & Ali, B. (2022). Numerical solution of 3D rotating nanofluid flow subject to Darcy-Forchheimer law, bio-convection and activation energy. South African Journal of Chemical Engineering, 40, 48–56.

    Article  Google Scholar 

  39. Abdal, S., Mariam, A., Ali, B., Younas, S., Ali, L., & Habib, D. (2021). Implications of bioconvection and activation energy on Reiner-Rivlin nanofluid transportation over a disk in rotation with partial slip. Chinese Journal of Physics, 73, 672–683.

    Article  MathSciNet  Google Scholar 

  40. Ali, B., Naqvi, R. A., Hussain, D., Aldossary, O. M., & Hussain, S. (2020). Magnetic rotating flow of a hybrid nano-materials Ag-MoS2 and Go-MoS2 in C2H6O2-H2O hybrid base fluid over an extending surface involving activation energy: FE simulation. Mathematics, 8(10), 1730.

    Article  Google Scholar 

  41. Ali, L., Liu, X., Ali, B., Abdal, S., & Zulqarnain, R. M. (2021). Finite element analysis of unsteady MHD Blasius and Sakiadis flow with radiation and thermal convection using Cattaneo-Christov heat flux model. Physica Scripta, 96(12), 125219.

    Article  Google Scholar 

  42. Awan, A. U., Ahammad, N. A., Majeed, S., Gamaoun, F., & Ali, B. (2022). Significance of hybrid nanoparticles, Lorentz and Coriolis forces on the dynamics of water based flow. International Communications in Heat and Mass Transfer, 135, 106084.

    Article  Google Scholar 

  43. Gupta, R., Gaur, M., Dadheech, P. K., & Agrawal, P. (2022). Numerical study of marangoni convection flow of GO-nanofluid with H2O–EG hybrid base fluid with non-linear thermal radiation. Journal of Nanofluids, 11(2), 245–250.

    Article  Google Scholar 

  44. Saeed, A., Khan, N., Gul, T., Kumam, W., Alghamdi, W., & Kumam, P. (2021). The flow of blood-based hybrid nanofluids with couple stresses by the convergent and divergent channel for the applications of drug delivery. Molecules, 26(21), 6330.

    Article  Google Scholar 

  45. Fuzhang, W., Akhtar, S., Nadeem, S., & El-Shafay, A. S. (2022). Mathematical computations for the physiological flow of Casson fluid in a vertical elliptic duct with ciliated heated wavy walls. Waves in Random and Complex Media, 1(1), 1–14.

  46. Wang, F., Jamshed, W., Ibrahim, R. W., Abdalla, N. S. E., Abd-Elmonem, A., & Hussain, S. M. (2023). Solar radiative and chemical reactive influences on electromagnetic Maxwell nanofluid flow in Buongiorno model. Journal of Magnetism and Magnetic Materials, 576, 170748.

    Article  Google Scholar 

  47. Wang, F., Ahmed, A., Khan, M. N., Ahammad, N. A., Alqahtani, A. M., Eldin, S. M., & Abdelmohimen, M. A. (2023). Natural convection in nanofluid flow with chemotaxis process over a vertically inclined heated surface. Arabian Journal of Chemistry, 16(4), 104599.

    Article  Google Scholar 

  48. Liao, S. J. (2012). Homotopy analysis method in nonlinear differential equations,” Springer & Higher Education Press Heidelberg. Shanghai 200030, China.

  49. Liao, S. (2003). Beyond perturbation: Introduction to the homotopy analysis method. Chapman & Hall/ CRC.

    Book  Google Scholar 

  50. Liao, S. J. (2010). An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15, 2003–2016.

    Article  MathSciNet  Google Scholar 

  51. Liao, S. (2004). On the homotopy analysis method for nonlinear problems. Applied Mathematics and Computation, 147, 499–513.

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

A.R. and R.J conceived and designed the experiments, performed the experiments and analysed and interpreted the data; D.K and I.M. contributed reagents, materials, analysis tools or data and wrote the paper.

Corresponding authors

Correspondence to Dolat Khan or Ibrahim Mahariq.

Ethics declarations

Ethical Approval

Not Applicable.

Competing Interests

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None

Informed Consent

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, A., Khan, D., Jan, R. et al. The Impact of Marangoni Convection on Carbon Nanotube Blood Base Hybrid Nanofluid with Thermal Radiation Viscous Dissipation and Couple Stress, Analytical Study. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01441-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01441-w

Keywords

Navigation