Skip to main content
Log in

Computational Analysis to Explore Bioconvective Williamson Nanofluid Non-Darcian Flow over a Convective Cylindrical Surface with Gyrotactic Microorganisms and Activation Energy Aspects

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Current study envisions novel investigation about impact of multi-natured nanoparticles on characteristics produced by bioconvective motion of gyrotactic microorganisms in Williamson fluid flow over an enlargeable cylinder. In addition, consideration of physical aspects like viscous dissipation, permeability, activation energy, magnetic field, chemical reaction, and convective boundary constraints jointly also adds the strength and innovative prospect of present communications. In view of its originality, firstly formulation of the problem is constructed in the form of dimensionless ODEs. Numerical simulations are computed by executing shooting method in combination with RK-4 method to attain outcomes. Additionally, a machine learning algorithm based on Levenberg-Marquardt scheme is employed to predict numerical results found from the numerical procedures. Credibility of work is ensured by making comparison with existing studies in restricted sense of the present effort. Results depicting the behavior of associated distributions against flow controlling parameters are interpreted through graphs and tables. Quantities of engineering interest are computed against governing parameters in comparative manner for three different nanoparticles. It is certified that the velocity profile exceeds when Fe3O4 nanoparticles are added whereas temperature, concentration, and motile microorganism’s distributions are optimum in case of (Ag) nanoparticles. It is worthwhile to mention that all associated engineering quantities show contrary behavior with respect to their distributions against addition of respective nanoparticles. It is also recorded that amplification in the magnitude of activation energy elevates concentration distributions whereas reduces the mass flux. Convective boundary constraints employed at the surface of cylinder cause enrichment in temperature and concentration profiles and respective fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

All the data is included in the manuscript for assistance of researchers to work in future.

References

  1. S.U. Choi, J.A. (1995). Eastman, Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135-29. Argonne National Lab. (ANL), Argonne, IL, United States.

  2. Das, S. K., Putra, N., & Roetzel, W. (2003). Pool boiling characteristics of nano-fluids. International Journal of Heat and Mass Transfer, 46, 851–862.

    Article  Google Scholar 

  3. Hwang, Y., Ahn, Y., Shin, H., Lee, C., Kim, G., & Park, H. (2006). Investigation on characteristics of thermal conductivity enhancement of nanofluids. Current Applied Physics, 6, 1068–1071.

    Article  Google Scholar 

  4. Aravind, S. S. J., Baskar, P., Baby, T. T., Sabareesh, R. K., Das, S., & Ramaprabhu, S. (2011). Investigation of structural stability, dispersion, viscosity, and conductive heat transfer properties of functionalized carbon nanotube based nanofluids. The Journal of Physical Chemistry C, 115(34), 16737–16744.

  5. Aravind, S. J., Baskar, P., Baby, T. T., Sabareesh, R. K., Das, S., & Ramaprabhu, S. (2011). Investigation of structural stability, dispersion, viscosity, and conductive heat transfer properties of functionalized carbon nanotube based nanofluids. Journal of Physics Chemical C, 115, 16737–16744.

    Article  Google Scholar 

  6. Ryzhkov, I. I., & Minakov, A. V. (2014). The effect of nanoparticle diffusion and thermophoresis on convective heat transfer of nanofluid in a circular tube. International Journal of Heat and Mass Transfer, 77, 956–969.

    Article  Google Scholar 

  7. Bahiraei, M., & Hangi, M. (2013). Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field. Energy Conversion Management, 76, 1125–1133.

    Article  Google Scholar 

  8. Wu, Z., Wang, L., & Sundén, B. (2013). Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger. Applied Thermal Engineering, 60, 266–274.

    Article  Google Scholar 

  9. Obalalu, A. M., Oni, M. O., Khan, U., Abbas, A., Taseer, M., & Zaib, A. (2023). Two-phase numerical simulation for the heat and mass transfer evaluation across a vertical deformable sheet with significant impact of solar radiation and heat source/sink. Arabian Journal for Science and Engineering, 1–19. https://doi.org/10.1007/s13369-023-08585-z

  10. Salawu, S. O., Obalalu, A. M., Fatunmbi, E. O., & Oderinu, R. A. (2022). Thermal Prandtl-Eyring hybridized MoS2-SiO2/C3H8O2 and SiO2-C3H8O2 nanofluids for effective solar energy absorber and entropy optimization: A solar water pump implementation. Journal of Molecular Liquids, 361, 119608.

    Article  Google Scholar 

  11. Obalalu, A. M., Oreyeni, T., Abbas, A., Memon, M. A., Khan, U., El-Sayed, M. S., Hassan, M. A., & Pop, I. (2023). Implication of electromagnetohydrodynamic and heat transfer analysis in nanomaterial flow over a stretched surface: Applications in solar energy. Case Studies in Thermal Engineering, 49, 103381.

    Article  Google Scholar 

  12. Obalalu, A. M., Adebayo, L. L., Colak, I., Ajala, A. O., & Fatai, A. W. (2022). Entropy generation minimization on electromagnetohydrodynamic radiative Casson nanofluid flow over a melting Riga plate. Heat Transfer, 51, 3951–3978.

    Article  Google Scholar 

  13. Obalalu, A. M. (2021). Heat and mass transfer in an unsteady squeezed Casson fluid flow with novel thermophysical properties: Analytical and numerical solution. Heat Transfer, 50, 7988–8011.

    Article  Google Scholar 

  14. Salawu, S. O., Obalalu, A. M., & Shamshuddin, M. D. (2023). Nonlinear solar thermal radiation efficiency and energy optimization for magnetized hybrid Prandtl-Eyring nanoliquid in aircraft. Arabian Journal for Science and engineering, 48, 3061–3072.

    Article  Google Scholar 

  15. Haq, F., Rahman, M. U., Khan, M. I., Abdullaeva, B. S., & Altuijri, R. (2023). Mathematical modeling and theoretical analysis of bioconvective magnetized sutterby nanofluid flow over rotating disk with activation energy. BioNanoScience, 13, 1849–1862.

    Article  Google Scholar 

  16. Sangeetha, E., & De, P. (2023). Stagnation point flow of bioconvective MHD nanofluids over Darcy Forchheimer porous medium with thermal radiation and buoyancy effect. BioNanoScience, 13, 1022–1035.

    Article  Google Scholar 

  17. Liu, C., Khan, M. U., Ramzan, M., Chu, Y. M., Kadry, S., Malik, M. Y., & Chinram, R. (2021). Nonlinear radiative Maxwell nanofluid flow in a Darcy-Forchheimer permeable media over a stretching cylinder with chemical reaction and bioconvection. Scientific Reports, 11, 9391.

    Article  Google Scholar 

  18. Zhang, X., Yang, D., Rehman, M. I. U., Mousa, A. A., & Hamid, A. (2022). Numerical simulation of bioconvection radiative flow of Williamson nanofluid past a vertical stretching cylinder with activation energy and swimming microorganisms. Case Studies in Thermal Engineering, 33, 101977.

    Article  Google Scholar 

  19. Salahuddin, T., Khan, M., Saeed, T., Ibrahim, M., & Chu, Y. M. (2021). Induced MHD impact on exponentially varying viscosity of Williamson fluid flow with variable conductivity and diffusivity. Case Studies in Thermal Engineering, 25, 100895.

    Article  Google Scholar 

  20. Waqas, M., Khan, M. I., Asghar, Z., Kadry, S., Chu, Y. M., & Khan, W. A. (2020). Interaction of heat generation in nonlinear mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier’s and Fick’s concept. Journal of Materials Research and Technology, 9, 11080–11086.

    Article  Google Scholar 

  21. Rashid, M., Ansar, K., & Nadeem, S. (2020). Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. Physica A: Statistical Mechanics and its Applications, 553, 123979.

    Article  MathSciNet  Google Scholar 

  22. Salahuddin, T., Kousar, I., Khan, M., & Iqbal, M. M. (2024). Electro-osmotic impact of Williamson fluid flow induced by cilia curved walls. International Journal of Electrochemical Science, 19, 100404.

    Article  Google Scholar 

  23. Pooja, M. N., Narasimhamurthy, S. K., & Anitha, V. (2024). Numerical investigation of flow dynamics of Williamson fluid over an expanding cylinder/plate in presence of homogeneous/heterogeneous reactions. International Journal of Applied and Computational Mathematics, 10, 10.

    Article  MathSciNet  Google Scholar 

  24. Ahmed, K., Khan, W. A., Akbar, T., Rasool, G., Alharbi, S. O., & Khan, I. (2021). Numerical investigation of mixed convective Williamson fluid flow over an exponentially stretching permeable curved surface. Fluids, 6, 260.

    Article  Google Scholar 

  25. Jalili, B., Ganji, A. D., Jalili, P., Nourazar, S. S., & Ganji, D. D. (2022). Thermal analysis of Williamson fluid flow with Lorentz force on the stretching plate. Case Studies in Thermal Engineering, 39, 102374.

    Article  Google Scholar 

  26. Shamshuddin, M. D., Salawu, S. O., Shahzad, F., Jamshed, W., Eid, M. R., & Rajput, G. R. (2023). Thermal examination of chemical interaction and thermophoretic diffusion of Williamson fluid flow across Riga plate surface with nonlinearity radiation flux. Numerical Heat Transfer, Part A: Applications, 1–15. https://doi.org/10.1080/10407782.2023.2251092

  27. Kumar, P., Yadav, R. S., & Makinde, O. D. (2023). Numerical study of Williamson fluid flow and heat transfer over a permeable stretching cylinder with the effects of joule heating and heat generation/absorption. Heat Transfer, 52, 3372–3388.

    Article  Google Scholar 

  28. Sadiq, N., Jawad, M., Khalid, F., Jahan, S., & Hassan, M. A. (2024). Comparative analysis of non-Newtonian and Newtonian fluid flow with dual slip in the presence of motile microorganisms and nanoparticles. BioNanoScience, 1–16. https://doi.org/10.1007/s12668-023-01284-x

  29. Srinivas, A. N. S., Haseena, C., & Sreenadh, S. (2019). Peristaltic transport of nanofluid in a vertical porous stratum with heat transfer effects. BioNanoScience, 9, 117–130.

    Article  Google Scholar 

  30. Platt, R. J. (1961). Bioconvection patterns in cultures of free-swimming organisms. Science, 133, 1766–1767.

    Article  Google Scholar 

  31. Nultsch, W., & Hoff, E. (1973). Investigation on pattern formation in Euglenae. Arch. Protistenk, 115, 336.

    Google Scholar 

  32. Kessler, J. O. (1984). Gyrotactic buoyant convection and spontaneous pattern formation in algal cell cultures. In Nonequilibrium cooperative phenomena in physics and related fields (pp. 241–248). https://doi.org/10.1007/978-1-4684-8568-4_14

  33. Bees, M. A., & Hill, N. A. (1997). Wavelengths of bioconvection patterns. Journal of experimental biology, 200, 1515–1526.

    Article  Google Scholar 

  34. Quang, T. N., & Palec, G. L. (2008). Gravitactic bioconvection in a fluid-saturated porous medium with double diffusion. Journal of Porous Media, 11, 751–764. https://doi.org/10.1615/JPorMedia.v11.i8.40

  35. Khan, U., Ahmed, N., & Mohyud-Din, S. T. (2016). Influence of viscous dissipation and joule heating on MHD bio-convection flow over a porous wedge in the presence of nanoparticles and gyrotactic microorganisms. Springerplus, 5, 1–18.

    Article  Google Scholar 

  36. Hady, M. F., Mahdy, A., Ramadan, M. A., & Zaid, O. A. A. (2016). Effects of viscous dissipation on unsteady MHD thermo bioconvection boundary layer flow of a nanofluid containing gyrotactic microorganisms along a stretching sheet, World. Journal of Mechanics, 6, 505–526.

    Google Scholar 

  37. Uddin, M. J., Khan, W. A., Qureshi, S. R., & Bég, O. A. (2017). Bioconvection nanofluid slip flow past a wavy surface with applications in nano-biofuel cells. Chinese Journal of Physics, 55, 2048–2063.

    Article  Google Scholar 

  38. Sudhagar, P., Peri, K. K., & Kumar, B. R. (2019). Gyrotactic microorganism effects on mixed convective nanofluid flow past a vertical cylinder. Journal of Thermal Science and Engineering Applications, 11, 041018.

    Article  Google Scholar 

  39. Dawar, A., Shah, Z., Alshehri, M. H., Islam, S., & Kumam, P. (2021). Magnetized and non-magnetized Casson fluid flow with gyrotactic microorganisms over a stratified stretching cylinder. Scientific Reports, 11, 16376.

    Article  Google Scholar 

  40. Sarkar, S., & Das, S. (2022). Magneto-thermo-bioconvection of a chemically sensitive Cross nanofluid with an infusion of gyrotactic microorganisms over a lubricious cylindrical surface: Statistical analysis. International Journal of Modelling and Simulation, 43, 1–22.

  41. Bhatti, M. M., Arain, M. B., Zeeshan, A., Ellahi, R., & Doranehgard, M. H. (2022). Swimming of gyrotactic microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage. Journal of Energy Storage, 45, 103511.

    Article  Google Scholar 

  42. Othman, H. A., Ali, B., Jubair, S., Almusawa, M. Y., & Aldin, S. M. (2023). Numerical simulation of the nanofluid flow consists of gyrotactic microorganism and subject to activation energy across an inclined stretching cylinder. Scientific Reports, 13, 7719.

    Article  Google Scholar 

  43. Asma, M., Othman, W. A. M., & Muhammad, T. (2019). Numerical study for Darcy-Forchheimer flow of nanofluid due to a rotating disk with binary chemical reaction and Arrhenius activation energy. Mathematics, 7, 921.

    Article  Google Scholar 

  44. Asma, M., Othman, W. A. M., Muhammad, T., Mallawi, F., & Wong, B. R. (2019). Numerical study for magnetohydrodynamic flow of nanofluid due to a rotating disk with binary chemical reaction and Arrhenius activation energy. Symmetry, 11, 1282.

    Article  Google Scholar 

  45. Hayat, T., Aziz, A., Muhammad, T., & Alsaedi, A. (2019). Effects of binary chemical reaction and Arrhenius activation energy in Darcy-Forchheimer three-dimensional flow of nanofluid subject to rotating frame. Journal of Thermal Analysis and Calorimetry, 136, 1769–1779.

    Article  Google Scholar 

  46. Kalaivanan, R., Ganesh, N. V., & Al-Mdallal, M. Q. (2020). An investigation on Arrhenius activation energy of second grade nanofluid flow with active and passive control of nanomaterials. Case Studies in Thermal Engineering, 22, 100774.

    Article  Google Scholar 

  47. Maraj, E. N., Khatoon, Z., Ijaz, S., & Mehmood, R. (2021). Effect of Arrhenius activation energy and medium porosity on mixed convective diluted ethylene glycol nanofluid flow towards a curved stretching surface. International Communications in Heat and Mass Transfer, 129, 105691.

    Article  Google Scholar 

  48. Khan, A., Saeed, A., Tassaddiq, A., Gul, T., Mukhtar, S., Kumam, P., Ali, I., & Kumam, W. (2021). Bio-convective micropolar nanofluid flow over thin moving needle subject to Arrhenius activation energy, viscous dissipation and binary chemical reaction. Case Studies in Thermal Engineering, 25, 100989.

    Article  Google Scholar 

  49. Andrade, J. J., Costa, U. M. S., Almeida, M. P., Makse, H. A., & Stanley, H. E. (1999). Inertial effects on fluid flow through disordered porous media. Physical Review Letters, 82, 5249.

    Article  Google Scholar 

  50. Hill, R. J., Koch, D. L., & Ladd, A. J. C. (2001). The first effects of fluid inertia on flows in ordered and random arrays of spheres. Journal of Fluid Mechanics, 448, 213–241.

    Article  MathSciNet  Google Scholar 

  51. Soni, J. P., Islam, N., & Basak, P. (1978). An experimental evaluation of non-Darcian flow in porous media. Journal of Hydrology, 38, 231–241.

    Article  Google Scholar 

  52. Teng, Y., Wang, Y., Li, Z., Qiao, R., & Chen, C. (2023). Temperature effect on non-Darcian flow in low-permeability porous media. Journal of Hydrology, 616, 128780.

    Article  Google Scholar 

  53. Zhang, L., Tariq, N., & Bhatti, M. M. (2023). Study of nonlinear quadratic convection on magnetized viscous fluid flow over a non-Darcian circular elastic surface via spectral approach. Journal of Taibah University for Science, 17, 2183702.

    Article  Google Scholar 

  54. Meng, X., Zhang, W., Shen, L., Yin, M., & Liu, D. (2024). Unsteady flow modeling of low-velocity non-Darcian flow to a partially penetrating well in a leaky aquifer system. Advances in Water Resources, 183, 104593.

    Article  Google Scholar 

  55. Nadeem, S., Mehmood, R., & Akbar, N. S. (2014). Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions. International Journal of Thermal Sciences, 78, 90–100.

    Article  Google Scholar 

  56. Zainal, N. A., Nazar, R., Naganthran, K., & Pop, I. (2020). MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chinese Journal of Physics, 66, 630–644.

    Article  MathSciNet  Google Scholar 

  57. Hussain, M., Ghaffar, A., Ali, A., Shahzad, A., Nisar, K. S., Alharthi, M. R., & Jamshed, W. (2021). MHD thermal boundary layer flow of a Casson fluid over a penetrable stretching wedge in the existence of nonlinear radiation and convective boundary condition. Alexandria Engineering Journal, 60, 5473–5483.

    Article  Google Scholar 

  58. Iftikhar, N., & Sadaf, H. (2023). Mathematical modelling of modified hybrid nanofluid in a peristaltic diverging tube with MHD and convective boundary conditions. Computational Particle Mechanics, 10, 1477–1491.

    Article  Google Scholar 

  59. Bilal, S., Pan, K., Ramzan, M., & Saleel, C. A. (2024). Volumetric thermo-convective and stratified Prandtl fluid magnetized flow over an extended convectively inclined surface with chemically reactive species. Physica Scripta, 99, 025922.

    Article  Google Scholar 

  60. Kumar, G., & Mondal, P. K. (2022). Application of artificial neural network for understanding multi-layer microscale transport comprising of alternate Newtonian and non-Newtonian fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 642, 128664.

    Article  Google Scholar 

  61. Rehman, K. U., Çolak, A. B., & Shatanawi, W. (2022). Artificial neural networking (ANN) model for convective heat transfer in thermally magnetized multiple flow regimes with temperature stratification effects. Mathematics, 10, 2394.

    Article  Google Scholar 

  62. Aljohani, J. L., Alaidarous, E. S., Raja, M. A. Z., Shoaib, M., & Alhothuali, M. S. (2021). Intelligent computing through neural networks for numerical treatment of non-Newtonian wire coating analysis model. Scientific Reports, 11, 9072.

    Article  Google Scholar 

  63. Lv, W., Xu, Z., Jia, X., Duan, S., Liu, J., & Song, X. (2024). Prediction of particle settling velocity in Newtonian and power-law fluids using artificial neural network model. Applied Sciences, 14, 826.

    Article  Google Scholar 

  64. Aslam, M. N., Riaz, A., Shaukat, N., Ali, S., Akram, S., & Bhatti, M. M. (2023). Analysis of incompressible viscous fluid flow in convergent and divergent channels with a hybrid meta-heuristic optimization techniques in ANN: An intelligent approach. Journal of Central South University, 30, 4149–4167.

    Article  Google Scholar 

  65. Khan, Z., Zuhra, S., Islam, S., Raja, M. A. Z., & Ali, A. (2023). Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy-Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN). The European Physical Journal Plus, 138, 107.

    Article  Google Scholar 

  66. Raja, M. A. Z., Shoaib, M., Tabassum, R., Khan, M. I., Jagannatha, C. G., & Gali, C. (2022). Performance analysis of backpropagated networks for entropy optimized mixed convection nanofluid with second-order slip over a stretching surface. Waves in Random and Complex Media, 1–23. https://doi.org/10.1080/17455030.2022.2128465

  67. Shah, F. A., Raja, M. A. Z., Shoaib, M., Zamir, T., & Ihsan, A. (2024). Neural network design for cubic autocatalysis chemical processes, the flow of a Darcy-Forchheimer viscous fluid is optimized for entropy. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 104, e202300163.

    Article  MathSciNet  Google Scholar 

  68. Malik, M. Y., Bibi, M., Khan, F., Salahuddin, T. (2016). Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption. AIP Advances, 6.

  69. Nandi, S., Kumbhakar, B., & Sarkar, S. (2022). MHD stagnation point flow of Fe3O4/Cu/Ag-CH3OH nanofluid along a convectively heated stretching sheet with partial slip and activation energy: Numerical and statistical approach. International Communications in Heat and Mass Transfer, 130, 105791.

    Article  Google Scholar 

  70. Khan, W. A., & Pop, I. (2010). Boundary-layer flow of a nanofluid past a stretching sheet. International journal of heat and mass transfer, 53, 2477–2483.

    Article  Google Scholar 

  71. Ali, K., Ahmad, S., Nisar, K. S., Faridi, A. A., & Ashraf, M. (2021). Simulation analysis of MHD hybrid CuAl2O3/H2O nanofluid flow with heat generation through a porous media. International Journal of Energy Research, 45, 19165–19179.

    Article  Google Scholar 

  72. Ahmad, S., Akhter, S., Shahid, M. I., Ali, K., Akhtar, M., & Ashraf, M. (2022). Novel thermal aspects of hybrid nanofluid flow comprising of manganese zinc ferrite MnZnFe2O4, nickel zinc ferrite NiZnFe2O4 and motile microorganisms. Ain Shams Engineering Journal, 13, 101668.

    Article  Google Scholar 

  73. Said, Z., Sharma, P., Rajvikram, M. E., Tiwari, A. K., & Rathod, M. K. (2022). Exploring the specific heat capacity of water-based hybrid nanofluids for solar energy applications: A comparative evaluation of modern ensemble machine learning techniques. Journal of Energy Storage, 54, 105230.

    Article  Google Scholar 

  74. Rehman, K. U., Shatanawi, W., Asghar, Z., & Haitham, M. S. (2023). Neural networking analysis for MHD mixed convection Casson flow past a multiple surfaces: A numerical solution. AIMS Mathematics, 8, 15805–15823.

    Article  MathSciNet  Google Scholar 

  75. Rehman, K. U., & Shatanawi, W. (2023). Non-Newtonian mixed convection magnetized flow with heat generation and viscous dissipation effects: A prediction application of artificial intelligence. Processes, 11, 986.

    Article  Google Scholar 

  76. Rehman, K. U., Shatanawi, W., & Çolak, A. B. (2023). Levenberg–Marquardt training technique analysis of thermally radiative and chemically reactive stagnation point flow of non-Newtonian fluid with temperature dependent thermal conductivity. Mathematics, 11, 753. https://doi.org/10.3390/math11030753

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number RGP2/114/1444.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have extensively contributed in the manuscript. Details of authors contribution are mentioned below. S. Bilal (Conceptualization, Data curation, Formal Analysis, Investigation, Methodology, Software, Writing original draft, Writing-review and editing) Asadullah (Data curation, Investigation, Methodology, Validation, Visualization, Writing original draft, Writing-review and editing). M.Y. Malik (Formal analysis, Investigation, Visualization, Writing original draft, Writing-review and editing).

Corresponding author

Correspondence to Asadullah.

Ethics declarations

Ethics Approval

This work does not contain any research on human or animal studies.

Research Involving Humans and Animals Statement

This study does not involve research on human and animals.

Informed Consent

All authors provide consent to publish work presented in this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, S., Asadullah & Malik, M.Y. Computational Analysis to Explore Bioconvective Williamson Nanofluid Non-Darcian Flow over a Convective Cylindrical Surface with Gyrotactic Microorganisms and Activation Energy Aspects. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01437-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01437-6

Keywords

Navigation