Skip to main content
Log in

Rutin Trihydrate Conjugated Zinc Oxide Nanoparticles Targeting Oxidative Stress Pathways for the Protection of Gut Microbiome Dysfunction and Neurodegenerative Diseases

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases associated with gut dysbiosis are an important health concern, particularly reactive oxygen species (ROS) generation playing a critical role. However, therapeutic methods are hindered by the inadequate absorption of plant secondary metabolites into the brain. In our study, rutin trihydrate (RTH), a flavonoid, was used to synthesise rutin trihydrate-conjugated zinc oxide nanoparticles (RTH-ZnO) for addressing gut dysbiosis-generated ROS and its implications on neurodegeneration. We tested its antimicrobial properties against gut dysbiosis-associated pathogens and antioxidant activity against oxidative stress-induced zebrafish larvae. Our in vitro results indicated that the synthesised RTH-ZnO can efficiently scavenge free radicals and maintain redox homeostasis. The zebrafish developmental toxicity analysis does not reveal any lethal malformation in the RTH-ZnO-treated group with an increased survival rate. RTH-ZnO potentially regulated the intercellular reactive oxygen species (ROS) and stress-induced apoptosis in the larvae exposed to H2O2. Notably, cognitive functions were also improved with increased acetylcholinesterase (AChE) and antioxidant gene expression. In conclusion, our study supports the potential of RTH-ZnO nanoparticles to treat gut dysbiosis-generated ROS-induced neurodegeneration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Harshwardhan, J., Tembhurnikar, N. D., Thool, Rasika, J., Patil, Ranjita, K., & Das. (2021). Review on various factors responsible for neurodegenerative disorders. GSC Biological and Pharmaceutical Sciences, 16, 126–132. https://doi.org/10.30574/gscbps.2021.16.1.0203

    Article  Google Scholar 

  2. Zhou, Y., Zhen, Y., Wang, G., & Liu, B. (2022). Deconvoluting the complexity of reactive oxygen species (ROS) in neurodegenerative diseases. Frontiers in Neuroanatomy, 16. https://doi.org/10.3389/fnana.2022.910427.

  3. Liang, S., Tian, X., & Wang, C. (2022). Nanozymes in the treatment of diseases caused by excessive reactive oxygen specie. Journal of Inflammation Research, 15, 6307–6328. https://doi.org/10.2147/JIR.S383239

    Article  Google Scholar 

  4. Shabbir, U., Tyagi, A., Elahi, F., Aloo, S. O., & Oh, D. H. (2021). The potential role of polyphenols in oxidative stress and inflammation induced by gut microbiota in Alzheimer’s disease. Antioxidants, 10, 1370. https://doi.org/10.3390/antiox10091370.

    Article  Google Scholar 

  5. Ballway, J. W., & Song, B. J. (2021). Translational approaches with antioxidant phytochemicals against alcohol-mediated oxidative stress, gut dysbiosis, intestinal barrier dysfunction, and fatty liver disease. Antioxidants, 10, 384. https://doi.org/10.3390/antiox10030384.

    Article  Google Scholar 

  6. Eddaikra, A., & Eddaikra, N. (2021). Endogenous enzymatic antioxidant defense and pathologies, In: Antioxidants - Benefits, Sources, Mech. Action, IntechOpen, https://doi.org/10.5772/intechopen.95504.

  7. Mathews, P. D., Patta, A. C. M. F., Madrid, R. R. M., Ramirez, C. A. B., Pimenta, B. V., & Mertins, O. (2023). Efficient treatment of Fish Intestinal parasites applying a membrane-penetrating oral drug delivery nanoparticle. ACS Biomaterials Science & Engineering, 9, 2911–2923. https://doi.org/10.1021/acsbiomaterials.1c00890

    Article  Google Scholar 

  8. Hamrayev, H., Shameli, K., & Korpayev, S. (2021). Green Synthesis of Zinc Oxide nanoparticles and its Biomedical Applications: A review. Journal of Research in Nanoscience and Nanotechnology, 1, 62–74. https://doi.org/10.37934/jrnn.1.1.6274

    Article  Google Scholar 

  9. Fidelis, K. R., dos Santos Nunes, R. G., da Silva, C. S., Oliveira, C. V. B., Costa, A. R., de Lima Silva, J. R., dos Santos, L. B., de Oliveira, E. E. S., Pereira, P. S., de Menezes, I. R. A., Kamdem, J. P., Duarte, A. E., Pinho, A. I., & Barros, L. M. (2021). Evaluation of the neuroprotective effect of rutin on Drosophila melanogaster about behavioral and biochemical aspects induced by mercury chloride (HgCl2). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 249, 109119. https://doi.org/10.1016/j.cbpc.2021.109119

    Article  Google Scholar 

  10. Rasheed, S., Fries, F., Müller, R., & Herrmann, J. (2021). Zebrafish: An attractive model to study Staphylococcus aureus infection and its use as a drug Discovery Tool. Pharmaceuticals, 14, 594. https://doi.org/10.3390/ph14060594.

    Article  Google Scholar 

  11. Sathishkumar, P., Li, Z., Govindan, R., Jayakumar, R., Wang, C., & Gu, F. L. (2021). Zinc oxide-quercetin nanocomposite as a smart nano-drug delivery system: Molecular-level interaction studies. Applied Surface Science, 536, 147741. https://doi.org/10.1016/j.apsusc.2020.147741.

    Article  Google Scholar 

  12. Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. Bmc Bioinformatics, 18, 529. https://doi.org/10.1186/s12859-017-1934-z.

    Article  Google Scholar 

  13. Sarkar, P., Stefi, R. V., Pasupuleti, M., Paray, B. A., Al-Sadoon, M. K., & Arockiaraj, J. (2020). Antioxidant molecular mechanism of adenosyl homocysteinase from cyanobacteria and its wound healing process in fibroblast cells. Molecular Biology Reports, 47, 1821–1834. https://doi.org/10.1007/s11033-020-05276-y.

    Article  Google Scholar 

  14. Sannasimuthu, A., Kumaresan, V., Anilkumar, S., Pasupuleti, M., Ganesh, M. R., Mala, K., Paray, B. A., Al-Sadoon, M. K., Albeshr, M. F., & Arockiaraj, J. (2019). Design and characterization of a novel Arthrospira platensis glutathione oxido-reductase-derived antioxidant peptide GM15 and its potent anti-cancer activity via caspase-9 mediated apoptosis in oral cancer cells. Free Radical Biology and Medicine, 135, 198–209. https://doi.org/10.1016/j.freeradbiomed.2019.03.006.

    Article  Google Scholar 

  15. Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21, 143–152. https://doi.org/10.1016/j.jsps.2012.05.002

    Article  Google Scholar 

  16. Sannasimuthu, A., Kumaresan, V., Pasupuleti, M., Paray, B. A., Al-Sadoon, M. K., & Arockiaraj, J. (2018). Radical scavenging property of a novel peptide derived from C-terminal SOD domain of superoxide dismutase enzyme in Arthrospira platensis. Algal Research, 35, 519–529. https://doi.org/10.1016/j.algal.2018.09.028.

    Article  Google Scholar 

  17. Guru, A., Issac, P. K., Saraswathi, N. T., Seshadri, V. D., Gabr, G. A., & Arockiaraj, J. (2021). Deteriorating insulin resistance due to WL15 peptide from cysteine and glycine-rich protein 2 in high glucose-induced rat skeletal muscle L6 cells. Cell Biology International, 45, 1698–1709. https://doi.org/10.1002/CBIN.11608.

    Article  Google Scholar 

  18. Sengupta, I., Kumar, S. S. S., Gupta, K., & Chakraborty, S. (2021). In-vitro release study through novel graphene oxide aided alginate based pH-sensitive drug carrier for gastrointestinal tract. Materials Today Communications, 26, 101737. https://doi.org/10.1016/j.mtcomm.2020.101737

    Article  Google Scholar 

  19. Ekambaram, R., Sugumar, M., Karuppasamy, S., Prasad, P., & Dharmalingam, S. (2022). Fabrication of wheatgrass incorporated PCL/chitosan biomimetic nanoscaffold for skin wound healing: In vitro and In silico analysis. Journal of Drug Delivery Science and Technology, 71, 103286. https://doi.org/10.1016/j.jddst.2022.103286.

  20. Haridevamuthu, B., Manjunathan, T., Guru, A., Kumar, R. S., Rajagopal, R., Kuppusamy, P., Juliet, A., Gopinath, P., & Arockiaraj, J. (2022). Hydroxyl containing benzo[b]thiophene analogs mitigates the acrylamide induced oxidative stress in the zebrafish larvae by stabilizing the glutathione redox cycle. Life Sciences, 298, 120507. https://doi.org/10.1016/j.lfs.2022.120507.

    Article  Google Scholar 

  21. Sudhakaran, G., Prathap, P., Guru, A., Haridevamuthu, B., Murugan, R., Almutairi, B. O., Almutairi, M. H., Juliet, A., Gopinath, P., & Arockiaraj, J. (2022). Reverse pharmacology of Nimbin-N2 attenuates alcoholic liver injury and promotes the hepatoprotective dual role of improving lipid metabolism and downregulating the levels of inflammatory cytokines in zebrafish larval model. Molecular and Cellular Biochemistry, 477, 2387–2401. https://doi.org/10.1007/s11010-022-04448-7.

    Article  Google Scholar 

  22. Sarkar, P., Guru, A., Raju, S. V., Farasani, A., Oyouni, A. A. A., Alzahrani, O. R., Althagafi, H. A. E., Alharthi, F., Karuppiah, K. M., & Arockiaraj, J. (2021). GP13, an Arthrospira platensis cysteine desulfurase-derived peptide, suppresses oxidative stress and reduces apoptosis in human leucocytes and zebrafish (Danio rerio) embryo via attenuated caspase-3 expression. Journal of King Saud University-Science, 33, 101665. https://doi.org/10.1016/j.jksus.2021.101665

    Article  Google Scholar 

  23. Krishnan, M., & Kang, S. C. (2019). Vitexin inhibits acrylamide-induced neuroinflammation and improves behavioral changes in zebrafish larvae. Neurotoxicology and Teratology, 74, 106811. https://doi.org/10.1016/j.ntt.2019.106811.

    Article  Google Scholar 

  24. Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9.

    Article  Google Scholar 

  25. Issac, P. K., Guru, A., Chandrakumar, S. S., Lite, C., Saraswathi, N. T., Arasu, M. V., Al-Dhabi, N. A., Arshad, A., & Arockiaraj, J. (2020). Molecular process of glucose uptake and glycogen storage due to hamamelitannin via insulin signalling cascade in glucose metabolism. Molecular Biology Reports, 47, 6727–6740. https://doi.org/10.1007/s11033-020-05728-5.

    Article  Google Scholar 

  26. Savic, I. M., Savic-Gajic, I. M., Nikolic, V. D., Nikolic, L. B., Radovanovic, B. C., & Milenkovic-Andjelkovic, A. (2016). Enhencemnet of solubility and photostability of rutin by complexation with β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 86, 33–43. https://doi.org/10.1007/s10847-016-0638-8

    Article  Google Scholar 

  27. Saleemi, M. A., Alallam, B., Yong, Y. K., & Lim, V. (2022). Synthesis of zinc oxide nanoparticles with bioflavonoid rutin: Characterisation, antioxidant and antimicrobial activities and in vivo cytotoxic effects on Artemia Nauplii. Antioxidants, 11, 1853. https://doi.org/10.3390/antiox11101853.

    Article  Google Scholar 

  28. Selvaraj, K. S. V., Chowdhury, R., Bhattacharjee, C. (2013). Isolation and structural elucidation of flavonoids from aquatic fern Azolla microphylla and evaluation of free radical scavenging activity. International Journal of Pharmacy and Pharmaceutical Sciences, 5(Suppl 3), 743–749.

  29. Kumari, B., & Rao, K. V. (2014). Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. International Journal of Current Engineering and Technology, 4, 3411–3416.

  30. Shah, S. N., Ali, S. I., Ali, S. R., Naeem, M. A., Bibi, Y., Ali, S., Raza, S. M., & Khan, Y. (2016). Khan Sherwani, synthesis and characterization of Zinc Oxide nanoparticles for Antibacterial Applications. Journal of Basic & Applied Sciences, 12, 205–210.

    Google Scholar 

  31. Guru, A., Lite, C., Freddy, A. J., Issac, P. K., Pasupuleti, M., Saraswathi, N. T., Arasu, M. V., Al-Dhabi, N. A., Arshad, A., & Arockiaraj, J. (2021). Intracellular ROS scavenging and antioxidant regulation of WL15 from cysteine and glycine-rich protein 2 demonstrated in zebrafish in vivo model. Developmental and Comparative Immunology, 114, 103863. https://doi.org/10.1016/j.dci.2020.103863.

    Article  Google Scholar 

  32. Sudhakaran, G., Prathap, P., Guru, A., Rajesh, R., Sathish, S., Madhavan, T., Arasu, M. V., Al-Dhabi, N. A., Choi, K. C., Gopinath, P., & Arockiaraj, J. (2022). Anti‐inflammatory role demonstrated both in vitro and in vivo models using nonsteroidal tetranortriterpenoid, Nimbin (N1) and its analogs (N2 and N3) that alleviate the domestication of alternative medicine. Cell Biology International, 46, 771–791. https://doi.org/10.1002/cbin.11769

    Article  Google Scholar 

  33. Murugan, R., Mukesh, G., Haridevamuthu, B., Priya, P. S., Pachaiappan, R., Almutairi, B. O., Arokiyaraj, S., Guru, A., & Arockiaraj, J. (2023). Plausible antioxidant and anticonvulsant potential of brain targeted naringenin-conjugated graphene oxide nanoparticles. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-04343-1.

  34. Wang, F., Roy, S., (2017). Gut homeostasis, microbial dysbiosis, and opioids. Toxicologic Pathology 45 150–156. https://doi.org/10.1177/0192623316679898.

    Article  Google Scholar 

  35. Pan, I., Issac, P. K., Rahman, M. M., Guru, A., & Arockiaraj, J. (2023). Gut-brain axis a key player to control gut dysbiosis in neurological diseases. Molecular Neurobiology. https://doi.org/10.1007/s12035-023-03691-3.

  36. Yu, J., & Cheon, J. H. (2022). Microbial modulation in inflammatory bowel diseases. Immune Network, 22. https://doi.org/10.4110/in.2022.22.e44.

  37. Velayutham, M., Ojha, B., Issac, P. K., Lite, C., Guru, A., Pasupuleti, M., Arasu, M. V., Al-Dhabi, N. A., & Arockiaraj, J. (2021). NV14 from serine O-acetyltransferase of cyanobacteria influences the antioxidant enzymes in vitro cells, gene expression against H2O2 and other responses in vivo zebrafish larval model. Cell Biology International, 45, 2331–2346. https://doi.org/10.1002/CBIN.11680.

    Article  Google Scholar 

  38. Issac, P. K., Lite, C., Guru, A., Velayutham, M., Kuppusamy, G., Saraswathi, N. T., Al Olayan, E. M., Aloufi, A. S., Elokaby, M. A., Elumalai, P., Arshad, A., & Arockiaraj, J. (2021). Tryptophan-tagged peptide from serine threonine-protein kinase of Channa Striatus improves antioxidant defence in L6 myotubes and attenuates caspase 3–dependent apoptotic response in zebrafish larvae. Fish Physiology and Biochemistry, 47, 293–311. https://doi.org/10.1007/s10695-020-00912-7

    Article  Google Scholar 

  39. Sarkar, P., Lite, C., Kumar, P., Pasupuleti, M., Saraswathi, N. T., Arasu, M. V., Al-Dhabi, N. A., Arshad, A., & Arockiaraj, J. (2021). TL15 of Arthrospira platensis sulfite reductase scavenges free radicals demonstrated in oxidant induced larval zebrafish (Danio rerio) model. International Journal of Biological Macromolecules, 166, 641–653. https://doi.org/10.1016/j.ijbiomac.2020.10.222.

    Article  Google Scholar 

  40. Wu, Q., Yan, W., Liu, C., Li, L., Yu, L., Zhao, S., & Li, G. (2016). Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo. Environmental Pollution, 213, 793–800. https://doi.org/10.1016/j.envpol.2016.03.048.

    Article  Google Scholar 

  41. Nishimura, Y., Murakami, S., Ashikawa, Y., Sasagawa, S., Umemoto, N., Shimada, Y., & Tanaka, T. (2015). Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom (Kyoto), 55, 1–16. https://doi.org/10.1111/cga.12079.

    Article  Google Scholar 

  42. Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R., & Ribeiro, F. M. (2016). Alzheimer’s disease: Targeting the Cholinergic System. Current Neuropharmacology, 14, 101–115. https://doi.org/10.2174/1570159X13666150716165726

    Article  Google Scholar 

  43. Rueda Ruzafa, L., Cedillo, J. L., & Hone, A. J. (2021). Nicotinic acetylcholine receptor involvement in inflammatory bowel disease and interactions with gut microbiota. International Journal of Environmental Research and Public Health, 18, 1189. https://doi.org/10.3390/ijerph18031189.

    Article  Google Scholar 

  44. Li, S., Chen, J., Xie, P., Guo, X., Fan, H., Yu, D., Zeng, C., & Chen, L. (2015). The role of glutathione detoxification pathway in MCLR-induced hepatotoxicity in SD rats. Environmental Toxicology, 30, 1470–1480. https://doi.org/10.1002/tox.22017.

    Article  Google Scholar 

  45. Issac, P. K., Guru, A., Velayutham, M., Pachaiappan, R., Arasu, M. V., Al-Dhabi, N. A., Choi, K. C., Harikrishnan, R., & Arockiaraj, J. (2021). Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications. Life Sciences, 283, 119864. https://doi.org/10.1016/j.lfs.2021.119864.

    Article  Google Scholar 

Download references

Acknowledgements

The acknowledgment expresses gratitude to the Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, for their essential support in facilitating the successful completion of work conducted at the Zebra Fish Laboratory. This support likely included providing the necessary infrastructure, and resources, which greatly contributed to the project's accomplishment. Sincere, appreciation is extended to the Drug Testing Laboratory at Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, for their contribution of vital equipment such as the fluorescent microscope and ELISA reader.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, P.K.I. and K.V.; methodology, P.K.I; investigation, P.K.I. and K.V.; formal analysis, P.K.I. and K.V.; software, K.V.; writing—original draft, K.V.; writing—review and editing, P.K.I. and K.V.; visualisation, P.K.I. and K.V.

Corresponding author

Correspondence to Praveen Kumar Issac.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

All animal experiments were carried out following the ethical guidelines for the care and use of animals approved by the Institutional Ethical Committee (SU/CLAR/RD/001/2023).

Informed Consent 

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Gut dysbiosis will raise ROS level and leads to neurodegenerative diseases.

• Rutin trihydrate-conjugated zinc oxide nanoparticles (RTH-ZnO) were fabricated.

• RTH-ZnO inhibited the growth of gut dysbiosis-associated pathogens.

• RTH-ZnO scavenges free radicals and regulates stress-induced apoptosis.

• Improved cognitive behaviour was observed in the RTH-ZnO-treated group.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issac, P.K., Velumani, K. Rutin Trihydrate Conjugated Zinc Oxide Nanoparticles Targeting Oxidative Stress Pathways for the Protection of Gut Microbiome Dysfunction and Neurodegenerative Diseases. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01430-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01430-z

Keywords

Navigation