Skip to main content
Log in

A Review on Interaction of Nanomaterials of Group-XIV (G14) Elements of the Periodic Table with Proteins and DNA: Applications in Biotechnology and Pharmacy

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The physicochemical properties of group-XIV (G14) nanomaterials in the periodic table display a wide range of behaviors, making them a subject of significant interest in nanomedicine and nanobiotechnology due to their large surface area and low synthesis cost. Recently, there has been noteworthy development in the field of nanobiomedical research. Biomacromolecules can influence cell function primarily through cell-material surface interactions. Therefore, studying the interaction between G14-based nanomaterials and biomacromolecules like protein/DNA is a lucrative area of research that holds much promise. In this review, we offer a concise overview of the interaction between G14-based nanomaterials and protein/DNA. Furthermore, we explore their capacity to elicit structural variations from a bio-physicochemical perspective. We anticipate that this review will fundamentally contribute new perspectives to the application of G14-based nanomaterials in the fields of nanomedicine and pharmacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 1

Similar content being viewed by others

References

  1. Afzal, O., Altamimi, A. S., Nadeem, M. S., Alzarea, S. I., Almalki, W. H., Tariq, A., Mubeen, B., Murtaza, B. N., Iftikhar, S., & Riaz, N. (2022). Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials, 12, 4494.

    Article  Google Scholar 

  2. Couvreur, P., & Vauthier, C. (1991). Polyalkylcyanoacrylate nanoparticles as drug carrier: Present state and perspectives. Journal of Controlled Release, 17, 187–198.

    Article  Google Scholar 

  3. Pardridge, W. M. (1996). Physiologic-based strategies for protein drug delivery to the brain. Journal of Controlled Release, 39, 281–286.

    Article  Google Scholar 

  4. Labhasetwar, V., Song, C., & Levy, R. J. (1997). Nanoparticle drug delivery system for restenosis. Advanced Drug Delivery Reviews, 24, 63–85.

    Article  Google Scholar 

  5. Elmowafy, M., Samy, A., Abdelaziz, A. E., Shalaby, K., Salama, A., Raslan, M. A., & Abdelgawad, M. A. (2017). Polymeric nanoparticles based topical gel of poorly soluble drug: Formulation, ex-vivo and in vivo evaluation. Beni-Suef University Journal of Basic and Applied Sciences, 6, 184–191.

    Article  Google Scholar 

  6. Hickey, J. W., Santos, J. L., Williford, J.-M., & Mao, H.-Q. (2015). Control of polymeric nanoparticle size to improve therapeutic delivery. Journal of Controlled Release, 219, 536–547.

    Article  Google Scholar 

  7. Anselmo, A. C., & Mitragotri, S. (2019). Nanoparticles in the clinic: An update. Bioengineering & Translational Medicine, 4, e10143.

    Article  Google Scholar 

  8. Weissig, V., Pettinger, T. K., & Murdock, N. (2014). Nanopharmaceuticals (part 1): Products on the market. International Journal of Nanomedicine, 9, 4357–4373.

    Article  Google Scholar 

  9. Wang, J., Hu, Z., Xu, J., & Zhao, Y. (2014). Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Materials, 6, e84–e84.

    Article  Google Scholar 

  10. Nassab, C. N., Arooj, M., Shehadi, I. A., Parambath, J. B., Kanan, S. M., & Mohamed, A. A. (2021). Lysozyme and human serum albumin proteins as potential nitric oxide cardiovascular drug carriers: Theoretical and experimental investigation. The Journal of Physical Chemistry B, 125(28), 7750–7762.

    Article  Google Scholar 

  11. Abarca-Cabrera, L., Fraga-García, P., & Berensmeier, S. (2021). Bio-nano interactions: Binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomaterials research, 25, 1–18.

    Article  Google Scholar 

  12. Chung, A. S. M. T., Teo, Y. K., Cheng, W. T., & Tan, J. B. L. (2022). Structure–activity relationship of biological macromolecules. In A. K. Nayak, A. K. Dhara, & D. Pal (Eds.), Biological macromolecules (pp. 23–51). Elsevier.

    Chapter  Google Scholar 

  13. Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 8, 543–557.

    Article  Google Scholar 

  14. Esfandfar, P., Falahati, M., & Saboury, A. (2016). Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin. Journal of Biomolecular Structure & Dynamics, 34, 1962–1968.

    Article  Google Scholar 

  15. Rahman, M., Laurent, S., Tawil, N., Yahia, L. H., Mahmoudi, M., Rahman, M., Laurent, S., Tawil, N., Yahia, L. H., Mahmoudi, M. (2013). Analytical methods for corona evaluations. In: Rahman, M., Laurent, S., Tawil, N., Yahia, L., Mahmoudi, M. (eds) Protein-nanoparticle interactions: The bio-nano interface, Springer, pp. 65–82

  16. Crevillen, A. G., Escarpa, A., & García, C. D. (2018). Carbon-based nanomaterials in analytical chemistry. In F. A. Esteve-Turrillas (Ed.), de la Guardia M (pp. 345–374). Wiley & Sons Ltd.

    Google Scholar 

  17. Maiti, D., Tong, X., Mou, X., & Yang, K. (2019). Carbon-based nanomaterials for biomedical applications: A recent study. Frontiers in Pharmacology, 9, 1401.

    Article  Google Scholar 

  18. You, P., Yang, Y., Wang, M., Huang, X., & Huang, X. (2015). Graphene oxide-based nanocarriers for cancer imaging and drug delivery. Current Pharmaceutical Design, 21, 3215–3222.

    Article  Google Scholar 

  19. Biswas, K., Janani, G., Udayakumar, S., Deepika, B., & Girigoswami, K. (2023). Rough edges of reduced graphene oxide (rGO) sheets elicit anticancerous activities: An in vitro study. Results in Chemistry, 6, 101207.

    Article  Google Scholar 

  20. Lin, T.-X., Lai, P.-X., Mao, J.-Y., Chu, H.-W., Unnikrishnan, B., Anand, A., & Huang, C.-C. (2019). Supramolecular aptamers on graphene oxide for efficient inhibition of thrombin activity. Frontiers in chemistry, 7, 280.

    Article  Google Scholar 

  21. Jabłońska, A., Jaworska, A., Kasztelan, M., Berbeć, S., & Pałys, B. (2019). Graphene and graphene oxide applications for SERS sensing and imaging. Current Medicinal Chemistry, 26, 6878–6895.

    Article  Google Scholar 

  22. Li, H., Fierens, K., Zhang, Z., Vanparijs, N., Schuijs, M. J., Van Steendam, K., Nl, F. G., De Rycke, R., De Beer, T., & De Beuckelaer, A. (2016). Spontaneous protein adsorption on graphene oxide nanosheets allowing efficient intracellular vaccine protein delivery. ACS Applied Materials & Interfaces, 8, 1147–1155.

    Article  Google Scholar 

  23. Xue, T., Cui, X., Guan, W., Wang, Q., Liu, C., Wang, H., Qi, K., Singh, D. J., & Zheng, W. (2014). Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing. Biosensors & Bioelectronics, 58, 374–379.

    Article  Google Scholar 

  24. Biru, E. I., Necolau, M. I., Zainea, A., & Iovu, H. (2022). Graphene oxide–protein-based scaffolds for tissue engineering: Recent advances and applications. Polymers, 14, 1032.

    Article  Google Scholar 

  25. Hekmat, A., Salavati, F., & Hesami Tackallou, S. (2020). The effects of paclitaxel in the combination of diamond nanoparticles on the structure of human serum albumin (HSA) and their antiproliferative role on MDA-MB-231cells. Protein Journal, 39, 268–283.

    Article  Google Scholar 

  26. Pashah, Z., Hekmat, A., & Hesami Tackallou, S. (2019). Structural effects of Diamond nanoparticles and paclitaxel combination on calf thymus DNA. Nucleosides, Nucleotides & Nucleic Acids, 38, 249–278.

    Article  Google Scholar 

  27. Lai, H., Lu, M., Chen, F., Lalevee, J., Stenzel, M., & Xiao, P. (2019). Amphiphilic polymer coated nanodiamonds: A promising platform to deliver azonafide. Polymer Chemistry, 10, 1904–1911.

    Article  Google Scholar 

  28. Zhang, Z., Li, D., Ma, X., Li, X., Guo, Z., Liu, Y., & Zheng, S. (2020). Carboxylated nanodiamond-mediated NH2-PLGA nanoparticle-encapsulated fig polysaccharides for strongly enhanced immune responses in vitro and in vivo. International Journal of Biological Macromolecules, 165, 1331–1345.

    Article  Google Scholar 

  29. Bilal, M., Cheng, H., González-González, R. B., Parra-Saldivar, R., & Iqbal, H. M. (2021). Bio-applications and biotechnological applications of nanodiamonds. Journal of Materials Research and Technology, 15, 6175–6189.

    Article  Google Scholar 

  30. Barbiero, M., Castelletto, S., Zhang, Q., Chen, Y., Charnley, M., Russell, S., & Gu, M. (2020). Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labelled by iron-oxide nanoparticles. Nanoscale, 12, 8847–8857.

    Article  Google Scholar 

  31. Elugoke, S. E., Fayemi, O. E., Adekunle, A. S., Nkambule, T. T., Mamba, B. B., & Ebenso, E. E. (2021). Conductive nanodiamond-based detection of neurotransmitters: One decade, few sensors. ACS Omega, 6, 18548–18558.

    Article  Google Scholar 

  32. Laptinskiy, K., Vervald, E., Bokarev, A., Burikov, S., Torelli, M., Shenderova, O., Plastun, I., & Dolenko, T. (2018). Adsorption of DNA nitrogenous bases on nanodiamond particles: Theory and experiment. Journal of Physical Chemistry C, 122, 11066–11075.

    Article  Google Scholar 

  33. Raza, K., Kumar, D., Kiran, C., Kumar, M., Guru, S. K., Kumar, P., Arora, S., Sharma, G., Bhushan, S., & Katare, O. (2016). Conjugation of docetaxel with multiwalled carbon nanotubes and codelivery with piperine: Implications on pharmacokinetic profile and anticancer activity. Molecular Pharmaceutics, 13, 2423–2432.

    Article  Google Scholar 

  34. Dizaji, B. F., Farboudi, A., Rahbar, A., Azarbaijan, M. H., & Asgary, M. R. (2020). The role of single-and multi-walled carbon nanotube in breast cancer treatment. Therapeutic Delivery, 11, 653–672.

    Article  Google Scholar 

  35. Fabbro, C., Ali-Boucetta, H., Da Ros, T., Kostarelos, K., Bianco, A., & Prato, M. (2012). Targeting carbon nanotubes against cancer. Chemical Communications, 48, 3911–3926.

    Article  Google Scholar 

  36. Antonucci, A., Reggente, M., Roullier, C., Gillen, A. J., Schuergers, N., Zubkovs, V., Lambert, B. P., Mouhib, M., Carata, E., & Dini, L. (2022). Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics. Nature nanotechnology, 17(10), 1111–1119.

    Article  Google Scholar 

  37. Roxbury, D., Tu, X., Zheng, M., & Jagota, A. (2011). Recognition ability of DNA for carbon nanotubes correlates with their binding affinity. Langmuir, 27, 8282–8293.

    Article  Google Scholar 

  38. Shin, S. R., Shin, C., Memic, A., Shadmehr, S., Miscuglio, M., Jung, H. Y., Jung, S. M., Bae, H., Khademhosseini, A., & Tang, X. (2015). Aligned carbon nanotube–based flexible gel substrates for engineering biohybrid tissue actuators. Advanced Functional Materials, 25, 4486–4495.

    Article  Google Scholar 

  39. Zhao, C., Wu, L., Wang, X., Weng, S., Ruan, Z., Liu, Q., Lin, L., & Lin, X. (2020). Quaternary ammonium carbon quantum dots as an antimicrobial agent against gram-positive bacteria for the treatment of MRSA-infected pneumonia in mice. Carbon, 163, 70–84.

    Article  Google Scholar 

  40. Şimşek, S., Şüküroğlu, A. A., Yetkin, D., Özbek, B., Battal, D., & Genç, R. (2020). DNA-damage and cell cycle arrest initiated anti-cancer potency of super tiny carbon dots on MCF7 cell line. Science and Reports, 10, 1–14.

    Google Scholar 

  41. Marouzi, S., Darroudi, M., Hekmat, A., Sadri, K., & Oskuee, R. K. (2021). One-pot hydrothermal synthesis of carbon quantum dots from Salvia hispanica L. seeds and investigation of their biodistribution, and cytotoxicity effects. Journal of Environmental Chemical Engineering, 9, 105461.

    Article  Google Scholar 

  42. Pei, S., Zhang, J., Gao, M., Wu, D., Yang, Y., & Liu, R. (2015). A facile hydrothermal approach towards photoluminescent carbon dots from amino acids. Journal of Colloid and Interface Science, 439, 129–133.

    Article  Google Scholar 

  43. Rezaei, M., Hekmat, A., Chamani, J., Sadri, K., & Darroudi, M. (2024). Synthesis of carbon quantum dots from Trigonella foenum-graecum L seeds and their biodistribution in mice as an inorganic isotope label. Inorganic Chemistry Communications, 160, 111937.

    Article  Google Scholar 

  44. Zaibaq, N. G., Pollard, A. C., Collins, M. J., Pisaneschi, F., Pagel, M. D., & Wilson, L. J. (2020). Evaluation of the biodistribution of serinolamide-derivatized C60 fullerene. Nanomaterials, 10(1), 143.

    Article  Google Scholar 

  45. Mercy, D. J., Kiran, V., Thirumalai, A., Harini, K., Girigoswami, K., & Girigoswami, A. (2023). Rice husk assisted carbon quantum dots synthesis for amoxicillin sensing. Results in Chemistry, 6, 101219.

    Article  Google Scholar 

  46. Damian Guerrero, E., Lopez-Velazquez, A., Ahlawat, J., & Narayan, M. (2021). Carbon quantum dots for treatment of amyloid disorders. ACS Applied Nano Materials, 4, 2423–2433.

    Article  Google Scholar 

  47. Fernandes, N. B., Shenoy, R. U. K., Kajampady, M. K., Dcruz, C. E., Shirodkar, R. K., Kumar, L., & Verma, R. (2022). Fullerenes for the treatment of cancer: an emerging tool. Environment Science Pollution Reseach, 29, 58607–58627.

    Article  Google Scholar 

  48. Kurbanoglu, S., Cevher, S. C., Toppare, L., Cirpan, A., & Soylemez, S. (2022). Electrochemical biosensor based on three components random conjugated polymer with fullerene (C60). Bioelectrochemistry, 147, 108219.

    Article  Google Scholar 

  49. Zhang, M., Chen, Y., Liu, S. G., & Shi, X. (2023). Highly sensitive detection of L. monocytogenes using an electrochemical biosensor based on Si@ MB/AuNPs modified glassy carbon electrode. Microchemical Journal, 194, 109357.

    Article  Google Scholar 

  50. Shin, S. R., Li, Y.-C., Jang, H. L., Khoshakhlagh, P., Akbari, M., Nasajpour, A., Zhang, Y. S., Tamayol, A., & Khademhosseini, A. (2016). Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 105, 255–274.

    Article  Google Scholar 

  51. Roy, I., Rana, D., Sarkar, G., Bhattacharyya, A., Saha, N. R., Mondal, S., Pattanayak, S., Chattopadhyay, S., & Chattopadhyay, D. (2015). Physical and electrochemical characterization of reduced graphene oxide/silver nanocomposites synthesized by adopting a green approach. RSC Advances, 5, 25357–25364.

    Article  Google Scholar 

  52. Rümmeli, M. H., Rocha, C. G., Ortmann, F., Ibrahim, I., Sevincli, H., Boerrnert, F., Kunstmann, J., Bachmatiuk, A., Poetschke, M., & Shiraishi, M. (2011). Graphene: Piecing it together. Advanced Materials, 23, 4471–4490.

    Article  Google Scholar 

  53. Yang, K., Feng, L., Shi, X., & Liu, Z. (2013). Nano-graphene in biomedicine: Theranostic applications. Chemical Society Reviews, 42, 530–547.

    Article  Google Scholar 

  54. Hatamie, S., Mohamadyar-Toupkanlou, F., Mirzaei, S., Ahadian, M. M., Hosseinzadeh, S., Soleimani, M., Sheu, W.-J., Wei, Z. H., Hsieh, T. F., & Chang, W. C. (2019). Cellulose acetate/magnetic graphene nanofiber in enhanced human mesenchymal stem cells osteogenic differentiation under alternative current magnetic field. SPIN, 2, 1940011.

    Article  Google Scholar 

  55. Ghanbari, N., Salehi, Z., Khodadadi, A. A., Shokrgozar, M. A., & Saboury, A. A. (2021). Glucosamine-conjugated graphene quantum dots as versatile and pH-sensitive nanocarriers for enhanced delivery of curcumin targeting to breast cancer. Materials Science and Engineering C, 121, 111809.

    Article  Google Scholar 

  56. Tadyszak, K., Wychowaniec, J. K., & Litowczenko, J. (2018). Biomedical applications of graphene-based structures. Nanomaterials, 8, 944.

    Article  Google Scholar 

  57. He, Y., Jiao, B., & Tang, H. (2014). Interaction of single-stranded DNA with graphene oxide: Fluorescence study and its application for S1 nuclease detection. RSC Advances, 4, 18294–18300.

    Article  Google Scholar 

  58. Sun, B., Zhang, Y., Chen, W., Wang, K., & Zhu, L. (2018). Concentration dependent effects of bovine serum albumin on graphene oxide colloidal stability in aquatic environment. Environmental Science and Technology, 52, 7212–7219.

    Article  Google Scholar 

  59. Bagri, A., Mattevi, C., Acik, M., Chabal, Y. J., Chhowalla, M., & Shenoy, V. B. (2010). Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2, 581–587.

    Article  Google Scholar 

  60. Ghanbari, N., Salehi, Z., Khodadadi, A., Shokrgozar, M., Saboury, A., & Farzaneh, F. (2021). Tryptophan-functionalized graphene quantum dots with enhanced curcumin loading capacity and pH-sensitive release. Journal of Drug Delivery Science and Technology, 61, 102137.

    Article  Google Scholar 

  61. Hekmat, A., Hatamie, S., & Bakhshi, E. (2021). Probing the effects of synthesized silver nanowire/reduced graphene oxide composites on the structure and esterase-like activity of human serum albumin and its impacts on human endometrial stem cells: A new platform in nanomedicine. Nanomedicine Journal, 8, 42–56.

    Google Scholar 

  62. Dideikin, A. T., & Vul, A. Y. (2019). Graphene oxide and derivatives: The place in graphene family. Frontiers of Physics, 6, 149.

    Article  Google Scholar 

  63. Nan, Z., Hao, C., Ye, X., Feng, Y., & Sun, R. (2019). Interaction of graphene oxide with bovine serum albumin: A fluorescence quenching study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 210, 348–354.

    Article  Google Scholar 

  64. Raslan, A., Ciriza, J., Ochoa de Retana, A. M., Sanjuán, M. L., Toprak, M. S., Galvez-Martin, P., Saenz-del-Burgo, L., & Pedraz, J. L. (2021). Modulation of conductivity of alginate hydrogels containing reduced graphene oxide through the addition of proteins. Pharmaceutics, 13, 1473.

    Article  Google Scholar 

  65. Li, L., Li, Y., Tan, C., Zhang, T., Xin, X., Li, W., Li, J., & Lu, R. (2021). Study of the interaction mechanism between GO/rGO and trypsin. Journal of Hazardous Materials Advances, 3, 100011.

    Article  Google Scholar 

  66. Onaș, A. M., Bîru, I. E., Gârea, S. A., & Iovu, H. (2020). Novel bovine serum albumin protein backbone reassembly study: Strongly twisted β-sheet structure promotion upon interaction with GO-PAMAM. Polymers, 12, 2603.

    Article  Google Scholar 

  67. Eckhart, K. E., Schmidt, S. J., Starvaggi, F. A., Wolf, M. E., Vickery, W. M., & Sydlik, S. A. (2021). Peptide-and protein-graphene oxide conjugate materials for controlling mesenchymal stem cell fate. Regenerative Engineering and Translational Medicine, 7, 460–484.

    Article  Google Scholar 

  68. Sanchez, V. C., Jachak, A., Hurt, R. H., & Kane, A. B. (2012). Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chemical Research in Toxicology, 25, 15–34.

    Article  Google Scholar 

  69. Ranganathan, S. V., Halvorsen, K., Myers, C. A., Robertson, N. M., Yigit, M. V., & Chen, A. A. (2016). Complex thermodynamic behavior of single-stranded nucleic acid adsorption to graphene surfaces. Langmuir, 32, 6028–6034.

    Article  Google Scholar 

  70. Li, M., Pan, Y., Guo, X., Liang, Y., Wu, Y., Wen, Y., & Yang, H. (2015). Pt/single-stranded DNA/graphene nanocomposite with improved catalytic activity and CO tolerance. Journal of Materials Chemistry, 3, 10353–10359.

    Article  Google Scholar 

  71. Devi, S., Kumar, M., Tiwari, A., Tiwari, V., Kaushik, D., Verma, R., Bhatt, S., Sahoo, B. M., Bhattacharya, T., & Alshehri, S. (2022). Quantum dots: An emerging approach for cancer therapy. Frontiers in Materials, 8, 798440.

    Article  Google Scholar 

  72. Taherpour, A. A., & Mousavi, F. (2018). Carbon nanomaterials for electroanalysis in pharmaceutical applications. In A. M. Grumezescu (Ed.), Fullerens, graphenes and nanotubes (pp. 169–225). Elsevier.

    Chapter  Google Scholar 

  73. Kalluri, A., Debnath, D., Dharmadhikari, B., Patra, P. (2018). Graphene quantum dots: Synthesis and applications. In: Methods in enzymology, vol 609, Elsevier, pp. 335–354

  74. Tabish, T. A., Pranjol, M. Z. I., Karadag, I., Horsell, D. W., Whatmore, J. L., & Zhang, S. (2018). Influence of luminescent graphene quantum dots on trypsin activity. International Journal of Nanomedicine, 13, 1525–1538.

    Article  Google Scholar 

  75. Wang, M., Sun, Y., Cao, X., Peng, G., Javed, I., Kakinen, A., Davis, T. P., Lin, S., Liu, J., & Ding, F. (2018). Graphene quantum dots against human IAPP aggregation and toxicity in vivo. Nanoscale, 10, 19995–20006.

    Article  Google Scholar 

  76. Fang, G., Luan, B., Ge, C., Chong, Y., Dong, X., Guo, J., Tang, C., & Zhou, R. (2017). Understanding the graphene quantum dots-ubiquitin interaction by identifying the interaction sites. Carbon, 121, 285–291.

    Article  Google Scholar 

  77. Liang, L., Peng, X., Sun, F., Kong, Z., & Shen, J.-W. (2021). A review on the cytotoxicity of graphene quantum dots: From experiment to simulation. Nanoscale Advances, 3, 904–917.

    Article  Google Scholar 

  78. Xu, L., Dai, Y., Wang, Z., Zhao, J., Li, F., White, J. C., & Xing, B. (2018). Graphene quantum dots in alveolar macrophage: Uptake-exocytosis, accumulation in nuclei, nuclear responses and DNA cleavage. Particle and Fibre Toxicology, 15, 1–17.

    Article  Google Scholar 

  79. Rafiei, S., Dadmehr, M., Hosseini, M., Kermani, H. A., & Ganjali, M. R. (2019). A fluorometric study on the effect of DNA methylation on DNA interaction with graphene quantum dots. Methods and Applications in Fluorescence, 7(2), 025001.

    Article  Google Scholar 

  80. Kaur, R., & Badea, I. (2013). Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems. International Journal of Nanomedicine, 8, 203–220.

    Google Scholar 

  81. Balek, L., Buchtova, M., Bosakova, M. K., Varecha, M., Foldynova-Trantirkova, S., Gudernova, I., Vesela, I., Havlik, J., Neburkova, J., & Turner, S. (2018). Nanodiamonds as “artificial proteins”: Regulation of a cell signalling system using low nanomolar solutions of inorganic nanocrystals. Biomaterials, 176, 106–121.

    Article  Google Scholar 

  82. Khanal, D., Lei, Q., Pinget, G., Cheong, D. A., Gautam, A., Yusoff, R., Su, B., Yamaguchi, S., Kondyurin, A., & Knowles, J. C. (2020). The protein corona determines the cytotoxicity of nanodiamonds: Implications of corona formation and its remodelling on nanodiamond applications in biomedical imaging and drug delivery. Nanoscale Advances, 2, 4798–4812.

    Article  Google Scholar 

  83. Aramesh, M., Shimoni, O., Ostrikov, K., Prawer, S., & Cervenka, J. (2015). Surface charge effects in protein adsorption on nanodiamonds. Nanoscale, 7, 5726–5736.

    Article  Google Scholar 

  84. Lin, C.-L., Lin, C.-H., Chang, H.-C., & Su, M.-C. (2015). Protein attachment on nanodiamonds. Journal of Physical Chemistry A, 119, 7704–7711.

    Article  Google Scholar 

  85. Pishkar, L., Taheri, S., Makarem, S., Alizadeh Zeinabad, H., Rahimi, A., Saboury, A. A., & Falahati, M. (2017). Studies on the interaction between nanodiamond and human hemoglobin by surface tension measurement and spectroscopy methods. Journal of Biomolecular Structure & Dynamics, 35, 603–615.

    Article  Google Scholar 

  86. Vervald, A. M., Vervald, E. N., Burikov, S. A., Patsaeva, S. V., Kalyagina, N. A., Borisova, N. E., Vlasov, I. I., Shenderova, O. A., & Dolenko, T. A. (2020). Bilayer adsorption of lysozyme on nanodiamonds in aqueous suspensions. Journal of Physical Chemistry C, 124, 4288–4298.

    Article  Google Scholar 

  87. Augustyniak, M., Babczyńska, A., Dziewięcka, M., Flasz, B., Karpeta-Kaczmarek, J., Kędziorski, A., Mazur, B., Rozpędek, K., Alian, R. S., & Skowronek, M. (2022). Does age pay off? Effects of three-generational experiments of nanodiamond exposure and withdrawal in wild and longevity-selected model animals. Chemosphere, 303, 135129.

    Article  Google Scholar 

  88. Bates, K., & Kostarelos, K. (2013). Carbon nanotubes as vectors for gene therapy: Past achievements, present challenges and future goals. Advanced Drug Delivery Reviews, 65, 2023–2033.

    Article  Google Scholar 

  89. Zhang, W., Ding, Q., Jinruan, J., & Fang, J. (2016). Biomolecular interactions and application of carbon nanotubes in nanomedicine. Austin Biomolecules Open Access, 1, 1005.

    Google Scholar 

  90. Zeinabad, H. A., Zarrabian, A., Saboury, A. A., Alizadeh, A. M., & Falahati, M. (2016). Interaction of single and multi wall carbon nanotubes with the biological systems: Tau protein and PC12 cells as targets. Science and Reports, 6, 1–23.

    Google Scholar 

  91. Solorio-Rodriguez, S. A., Williams, A., Poulsen, S. S., Knudsen, K. B., Jensen, K. A., Clausen, P. A., Danielsen, P. H., Wallin, H., Vogel, U., & Halappanavar, S. (2023). Single-walled vs. multi-walled carbon nanotubes: Influence of physico-chemical properties on toxicogenomics responses in mouse lungs. Nanomaterials, 13(6), 1059.

    Article  Google Scholar 

  92. Marchesan, S., & Prato, M. (2015). Under the lens: Carbon nanotube and protein interaction at the nanoscale. Chemical Communications, 51, 4347–4359.

    Article  Google Scholar 

  93. Zhu, W., Kong, J., Zhang, J., Wang, J., Li, W., & Wang, W. (2019). Consequences of hydrophobic nanotube binding on the functional dynamics of signaling protein calmodulin. ACS Omega, 4, 10494–10501.

    Article  Google Scholar 

  94. Marchesan, S., Melchionna, M., & Prato, M. (2014). Carbon nanostructures for nanomedicine: Opportunities and challenges. uller. Nanotub Carbon Nanostructures, 22, 190–195.

    Article  Google Scholar 

  95. Chen, X., Fang, J., Cheng, Y., Zheng, J., Zhang, J., Chen, T., & Ruan, B. H. (2016). Biomolecular interaction analysis for carbon nanotubes and for biocompatibility prediction. Analytical Biochemistry, 505, 1–7.

    Article  Google Scholar 

  96. Park, K. H., Chhowalla, M., Iqbal, Z., & Sesti, F. (2003). Single-walled carbon nanotubes are a new class of ion channel blockers. Journal of Biological Chemistry, 278, 50212–50216.

    Article  Google Scholar 

  97. Qiu, X., Ke, F., Timsina, R., Khripin, C. Y., & Zheng, M. (2016). Attractive interactions between DNA–carbon nanotube hybrids in monovalent salts. Journal of Physical Chemistry C, 120, 13831–13835.

    Article  Google Scholar 

  98. Han, X., Li, S., Peng, Z., Al-Yuobi, A. O., Bashammakh, A. S. O., & Leblanc, R. M. (2016). Interactions between carbon nanomaterials and biomolecules. Journal of Oleo Science, 65, 1–7.

    Article  Google Scholar 

  99. Lai, L., Wei, X.-Q., Huang, W.-H., Mei, P., Ren, Z.-H., & Liu, Y. (2017). Impact of carbon quantum dots on dynamic properties of BSA and BSA/DPPC adsorption layers. Journal of Colloid and Interface Science, 506, 245–254.

    Article  Google Scholar 

  100. Song, Y., Wang, H., Zhang, L., Lai, B., Liu, K., & Tan, M. (2020). Protein corona formation of human serum albumin with carbon quantum dots from roast salmon. Food & Function, 11, 2358–2367.

    Article  Google Scholar 

  101. Prabhu, M. T., & Sarkar, N. (2022). Inhibitory effects of carbon quantum dots towards hen egg white lysozyme amyloidogenesis through formation of a stable protein complex. Biophysical Chemistry, 280, 106714.

    Article  Google Scholar 

  102. Wang, L., Wang, G., Wang, Y., Liu, H., Dong, S., & Hao, J. (2019). Fluorescent hybrid nanospheres induced by single-stranded DNA and magnetic carbon quantum dots. New Journal of Chemistry, 43, 4965–4974.

    Article  Google Scholar 

  103. Alrushaid, N., Khan, F. A., Al-Suhaimi, E. A., & Elaissari, A. (2023). Nanotechnology in cancer diagnosis and treatment. Pharmaceutics, 15, 1025.

    Article  Google Scholar 

  104. Chilakamarthi, U., & Giribabu, L. (2017). Photodynamic therapy: Past, present and future. Chemical Record, 17, 775–802.

    Article  Google Scholar 

  105. Melnyk, M. I., Ivanova, I. V., Dryn, D. O., Prylutskyy, Y. I., Hurmach, V. V., Platonov, M., Al Kury, L. T., Ritter, U., Soloviev, A. I., & Zholos, A. V. (2019). C60 fullerenes selectively inhibit BKCa but not Kv channels in pulmonary artery smooth muscle cells. Nanomedicine, 19, 1–11.

    Article  Google Scholar 

  106. Bai, Y., Wu, X., Ouyang, P., Shi, M., Li, Q., Maimaiti, T., Lan, S., Yang, S.-T., & Chang, X.-L. (2021). Surface modification mediates the interaction between fullerene and lysozyme: Protein structure and antibacterial activity. Environmental Science Nano, 8, 76–85.

    Article  Google Scholar 

  107. Roy, P., Bag, S., Chakraborty, D., & Dasgupta, S. (2018). Exploring the inhibitory and antioxidant effects of fullerene and fullerenol on ribonuclease A. ACS Omega, 3, 12270–12283.

    Article  Google Scholar 

  108. Noskov, B., Isakov, N., Gochev, G., Loglio, G., & Miller, R. (2021). Interaction of fullerene C60 with bovine serum albumin at the water–air interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 631, 127702.

    Article  Google Scholar 

  109. Fu, X., Fang, Y., Zhao, H., & Liu, S. (2018). Size-dependent binding of pristine fullerene (nC60) nanoparticles to bovine/human serum albumin. Journal of Molecular Structure, 1166, 442–447.

    Article  Google Scholar 

  110. Wu, L., Fu, F., Wang, W., Wang, W., Huang, Z., Huang, Y., Pan, X., & Wu, C. (2023). Plasma protein corona forming upon fullerene nanocomplex: Impact on both counterparts. Particuology, 73, 26–36.

    Article  Google Scholar 

  111. Liu, S., Sui, Y., Guo, K., Yin, Z., & Gao, X. (2012). Spectroscopic study on the interaction of pristine C 60 and serum albumins in solution. Nanoscale Research Letters, 7, 1–7.

    Article  Google Scholar 

  112. Liu, S., Se, W., & Liu, Z. (2021). Investigating the size-dependent binding of pristine nC60 to bovine serum albumin by multi-spectroscopic techniques. Materials, 14, 298.

    Article  Google Scholar 

  113. Vittala, S. K., & Joseph, J. (2018). Chiral self-assembly of fullerene clusters on CT-DNA templates. Faraday Discussions, 207, 459–469.

    Article  Google Scholar 

  114. Shafiei, N., Nasrollahzadeh, M., & Iravani, S. (2021). Green synthesis of silica and silicon nanoparticles and their biomedical and catalytic applications. Comments on Inorganic Chemistry, 41, 317–372.

    Article  Google Scholar 

  115. Nairi, V., Medda, S., Piludu, M., Casula, M. F., Vallet-Regì, M., Monduzzi, M., & Salis, A. (2018). Interactions between bovine serum albumin and mesoporous silica nanoparticles functionalized with biopolymers. Chemical Engineering Journal, 340, 42–50.

    Article  Google Scholar 

  116. Zhang, Y., & Xu, J. (2018). Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release. Royal Society Open Science, 5, 170986.

    Article  Google Scholar 

  117. Rafieepour, A., Azari, M. R., Jaktaji, J. P., Khodagholi, F., Peirovi, H., Mehrabi, Y., & Mohammadian, Y. (2021). The effect of particle size on the cytotoxicity of amorphous silicon dioxide: An in vitro toxicological study. Asian Pacific Journal of Cancer Prevention, 22, 325.

    Article  Google Scholar 

  118. Jiang, W., Mashayekhi, H., & Xing, B. (2009). Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environmental Pollution, 157, 1619–1625.

    Article  Google Scholar 

  119. Cui, L., Zheng, R., Liu, W., Shen, P., Tang, Y., Luo, J., Zhang, W., Jia, G., Wang, Y., & Zhao, S. (2018). Preparation of chitosan-silicon dioxide/BCSG1-siRNA nanoparticles to enhance therapeutic efficacy in breast cancer cells. Molecular Medicine Reports, 17, 436–441.

    Google Scholar 

  120. Zhou, Y., Qi, M., & Yang, M. (2022). Fluorescence determination of lactate dehydrogenase activity based on silicon quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 268, 120697.

    Article  Google Scholar 

  121. Du, L., Li, Z., Yao, J., Wen, G., Dong, C., & Li, H.-W. (2019). Enzyme free glucose sensing by amino-functionalized silicon quantum dot. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 216, 303–309.

    Article  Google Scholar 

  122. Setyawati, M. I., Tay, C. Y., & Leong, D. T. (2015). Mechanistic investigation of the biological effects of SiO2, TiO2, and ZnO nanoparticles on intestinal cells. Small (Weinheim an der Bergstrasse, Germany), 11, 3458–3468.

    Article  Google Scholar 

  123. Yadav, I., Aswal, V. K., & Kohlbrecher, J. (2016). Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins. Physical Review E, 93, 052601.

    Article  Google Scholar 

  124. Sabziparvar, N., Saeedi, Y., Nouri, M., Najafi Bozorgi, A. S., Alizadeh, E., Attar, F., Akhtari, K., Mousavi, S. E., & Falahati, M. (2018). Investigating the interaction of silicon dioxide nanoparticles with human hemoglobin and lymphocyte cells by biophysical, computational, and cellular studies. The Journal of Physical Chemistry B, 122, 4278–4288.

    Article  Google Scholar 

  125. Givens, B. E., Xu, Z., Fiegel, J., & Grassian, V. H. (2017). Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions. Journal of Colloid and Interface Science, 493, 334–341.

    Article  Google Scholar 

  126. Sadeghi-Kaji, S., Shareghi, B., Saboury, A. A., Farhadian, S., & Hemmati, R. (2019). A molecular investigation into the interaction of SiO2 nanoparticles with elastase by multispectroscopic techniques and kinetic studies. International Journal of Biological Macromolecules, 134, 216–222.

    Article  Google Scholar 

  127. Stan, M. S., Cinteza, L. O., Petrescu, L., Mernea, M. A., Calborean, O., Mihailescu, D. F., Sima, C., & Dinischiotu, A. (2018). Dynamic analysis of the interactions between Si/SiO2 quantum dots and biomolecules for improving applications based on nano-bio interfaces. Science and Reports, 8, 1–11.

    Google Scholar 

  128. Chinnathambi, S., Hanagata, N., Yamazaki, T., & Shirahata, N. (2020). Nano-bio interaction between blood plasma proteins and water-soluble silicon quantum dots with enabled cellular uptake and minimal cytotoxicity. Nanomaterials, 10, 2250.

    Article  Google Scholar 

  129. Shi, B., Shin, Y. K., Hassanali, A. A., & Singer, S. J. (2015). DNA binding to the silica surface. The Journal of Physical Chemistry B, 119, 11030–11040.

    Article  Google Scholar 

  130. Kumar, A., Bera, S., Singh, M., & Mondal, D. (2022). Molecular interactions of silica nanoparticles and biomolecule-functionalized silica nanoparticles with Bixa orellana L. plant DNA. Silicon, 14, 1407–1419.

    Article  Google Scholar 

  131. Bag, S., Rauwolf, S., Schwaminger, S. P., Wenzel, W., & Berensmeier, S. (2021). DNA binding to the silica: Cooperative adsorption in action. Langmuir, 37, 5902–5908.

    Article  Google Scholar 

  132. Yang, H., Wu, Q., Lao, C., Li, M., Gao, Y., Zheng, Y., & Shi, B. (2016). Cytotoxicity and DNA damage in mouse macrophages exposed to silica nanoparticles. Genetics and Molecular Research, 15, 1–14.

    Article  Google Scholar 

  133. Weisbach, A. (1886). Argyrodit, ein neues Silbererz. Neues Jahrb Min Geol. und Paläo. (pp. 67–71). Schweizerbart and Borntraeger science publishers.

    Google Scholar 

  134. Höll, R., Kling, M., & Schroll, E. (2007). Metallogenesis of germanium-A review. Ore Geology Reviews, 30, 145–180.

    Article  Google Scholar 

  135. Zheng, J., Yang, L., Deng, Y., Zhang, C., Zhang, Y., Xiong, S., Ding, C., Zhao, J., Liao, C., & Gong, D. (2020). A review of public and environmental consequences of organic germanium. Critical Reviews in Environment Science and Technology, 50, 1384–1409.

    Article  Google Scholar 

  136. Li, L., Ruan, T., Lyu, Y., & Wu, B. (2017). Advances in effect of germanium or germanium compounds on animals-A review. Journal of Biosciences and Medicines, 5, 56–73.

    Article  Google Scholar 

  137. Keith, L. S., & Maples-Reynolds, N. (2022). Germanium. In G. F. Nordberg, B. A. Fowler, & M. Nordberg (Eds.), Handbook on the toxicology of metals (pp. 289–316). Elsevier.

    Chapter  Google Scholar 

  138. Ma, Y.-H., Huang, C.-P., Tsai, J.-S., Shen, M.-Y., Li, Y.-K., & Lin, L.-Y. (2011). Water-soluble germanium nanoparticles cause necrotic cell death and the damage can be attenuated by blocking the transduction of necrotic signaling pathway. Toxicology Letters, 207, 258–269.

    Article  Google Scholar 

  139. McVey, B. F., Prabakar, S., Gooding, J. J., & Tilley, R. D. (2017). Solution synthesis, surface passivation, optical properties, biomedical applications, and cytotoxicity of silicon and germanium nanocrystals. ChemPlusChem, 82, 60–73.

    Article  Google Scholar 

  140. Ge, M., Zong, M., Xu, D., Chen, Z., Yang, J., Yao, H., Wei, C., Chen, Y., Lin, H., & Shi, J. (2021). Freestanding germanene nanosheets for rapid degradation and photothermal conversion. Materials Today Nano, 15, 100119.

    Article  Google Scholar 

  141. Taris, M., Ciaccafava, A., Lojou, E., Castano, S., & Lecomte, S. (2022). Reversible functionalization of germanium by thiol monolayers to probe protein/surface interactions by ATR-FTIR. Vibrational Spectroscopy, 123, 103457.

    Article  Google Scholar 

  142. Chaudhary, R. P., Saxena, S., & Shukla, S. (2016). Optical properties of stanene. Nanotechnology, 27, 495701.

    Article  Google Scholar 

  143. Wang, H., & Rogach, A. L. (2014). Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chemistry of Materials, 26, 123–133.

    Article  Google Scholar 

  144. Huang, Z., Zhu, J., Hu, Y., Zhu, Y., Zhu, G., Hu, L., Zi, Y., & Huang, W. (2022). Tin oxide (SnO2) nanoparticles: Facile fabrication, characterization, and application in UV photodetectors. Nanomaterials, 12, 632.

    Article  Google Scholar 

  145. Ahmadabad, L. E., Kalantari, F. S., Liu, H., Hasan, A., Gamasaee, N. A., Edis, Z., Attar, F., Ale-Ebrahim, M., Rouhollah, F., & Babadaei, M. M. N. (2021). Hydrothermal method-based synthesized tin oxide nanoparticles: Albumin binding and antiproliferative activity against K562 cells. Materials Science and Engineering C, 119, 111649.

    Article  Google Scholar 

  146. Nakazawa, H., Seta, Y., Hirose, T., Masuda, Y., & Umetsu, M. (2018). Use of a phage-display method to identify peptides that bind to a tin oxide nanosheets. Protein and Peptide Letters, 25, 68–75.

    Article  Google Scholar 

  147. Nasir, Z., Shakir, M., Wahab, R., Shoeb, M., Alam, P., Khan, R. H., & Mobin, M. (2017). Co-precipitation synthesis and characterization of Co doped SnO2 NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities. International Journal of Biological Macromolecules, 94, 554–565.

    Article  Google Scholar 

  148. Nithiyanantham, U., Ramadoss, A., & Kundu, S. (2016). Synthesis and characterization of DNA fenced, self-assembled SnO2 nano-assemblies for supercapacitor applications. Dalton Transactions, 45, 3506–3521.

    Article  Google Scholar 

  149. Gedam, A. H., Narnaware, P. K., Kinhikar, V. (2018). Blended composites of chitosan: Adsorption profile for mitigation of toxic Pb (II) ions from water. In: Dongre, R. S. (ed.) Chitin-chitosan-myriad functionalities in science and technology, InTech., pp. 100–118.

  150. Dudev, T., Grauffel, C., & Lim, C. (2018). How Pb2+ binds and modulates properties of Ca2+-signaling proteins. Inorganic Chemistry, 57, 14798–14809.

    Article  Google Scholar 

  151. Zhou, W., Saran, R., & Liu, J. (2017). Metal sensing by DNA. Chemical Reviews, 117, 8272–8325.

    Article  Google Scholar 

  152. Gui, S., Huang, Y., Zhu, Y., Jin, Y., & Zhao, R. (2019). Biomimetic sensing system for tracing Pb2+ distribution in living cells based on the metal–peptide supramolecular assembly. ACS Applied Materials & Interfaces, 11, 5804–5811.

    Article  Google Scholar 

  153. Bláhová, L., Nováková, Z., Večeřa, Z., Vrlíková, L., Dočekal, B., Dumková, J., Křůmal, K., Mikuška, P., Buchtová, M., & Hampl, A. (2020). The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. Nanotoxicology, 14, 214–231.

    Article  Google Scholar 

  154. Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Jan, S. A., Shinwari, Z. K., & Maaza, M. (2020). Bioinspired synthesis of pure massicot phase lead oxide nanoparticles and assessment of their biocompatibility, cytotoxicity and in-vitro biological properties. Arabian Journal of Chemistry, 13, 916–931.

    Article  Google Scholar 

  155. Muhammad, W., Khan, M. A., Nazir, M., Siddiquah, A., Mushtaq, S., Hashmi, S. S., & Abbasi, B. H. (2019). Papaver somniferum L. mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles: In-vitro biological applications, biocompatibility and their potential towards HepG2 cell line. Materials Science and Engineering: C, 103, 109740.

    Article  Google Scholar 

  156. Mousavi, M. F., Mirsian, S., Noori, A., Ilkhani, H., Sarparast, M., Moradi, N., Bathaie, S. Z., & Mehrgardi, M. A. (2017). BSA-templated Pb nanocluster as a biocompatible signaling probe for electrochemical EGFR immunosensing. Electroanalysis, 29, 861–872.

    Article  Google Scholar 

  157. Park, S. J. (2020). Protein–nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles. International Journal of Nanomedicine, 15, 5783–5802.

    Article  Google Scholar 

  158. Puri, A., Mohite, P., Maitra, S., Subramaniyan, V., Kumarasamy, V., Uti, D. E., Sayed, A. A., El-Demerdash, F. M., Algahtani, M., & El-Kott, A. F. (2024). From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomedicine & Pharmacotherapy, 170, 116083.

    Article  Google Scholar 

  159. Konar, M., Mathew, A., & Dasgupta, S. (2019). Effect of silica nanoparticles on the amyloid fibrillation of lysozyme. ACS Omega, 4, 1015–1026.

    Article  Google Scholar 

  160. Mishra, R. K., Ahmad, A., Vyawahare, A., Alam, P., Khan, T. H., & Khan, R. (2021). Biological effects of formation of protein corona onto nanoparticles. International Journal of Biological Macromolecules, 175, 1–18.

    Article  Google Scholar 

  161. Giri, K., Kuschnerus, I., Ruan, J., & Garcia-Bennett, A. E. (2020). Influence of a protein corona on the oral pharmacokinetics of testosterone released from mesoporous silica. Advances in Therapy, 3, 1900110.

    Article  Google Scholar 

  162. Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews Cancer, 17, 20–37.

    Article  Google Scholar 

  163. Hekmat, A., Saso, L., Lather, V., Pandita, D., Kostova, I., & Saboury, A. A. (2022). Recent advances in nanomaterials of group XIV elements of periodic table in breast cancer treatment. Pharmaceutics, 14, 2640.

    Article  Google Scholar 

  164. de Almeida, M. S., Susnik, E., Drasler, B., Taladriz-Blanco, P., Petri-Fink, A., & Rothen-Rutishauser, B. (2021). Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chemical Society Reviews, 50, 5397–5434.

    Article  Google Scholar 

  165. Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M. A., Alkawareek, M. Y., Dreaden, E. C., Brown, D., Alkilany, A. M., Farokhzad, O. C., & Mahmoudi, M. (2017). Cellular uptake of nanoparticles: Journey inside the cell. Chemical Society Reviews, 46, 4218–4244.

    Article  Google Scholar 

  166. Francia, V., Montizaan, D., & Salvati, A. (2020). Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. Beilstein Journal of Nanotechnology, 11, 338–353.

    Article  Google Scholar 

  167. Wu, K., Zhou, Q., & Ouyang, S. (2021). Direct and indirect genotoxicity of graphene family nanomaterials on DNA-A review. Nanomaterials (Basel), 11, 2889.

    Article  Google Scholar 

  168. Krętowski, R., & Cechowska-Pasko, M. (2022). The reduced graphene oxide (rGO) induces apoptosis, autophagy and cell cycle arrest in breast cancer cells. International Journal of Molecular Sciences, 23, 9285.

    Article  Google Scholar 

  169. Ban, G., Hou, Y., Shen, Z., Jia, J., Chai, L., & Ma, C. (2023). Potential biomedical limitations of graphene nanomaterials. International Journal of Nanomedicine, 18, 1695–1708.

    Article  Google Scholar 

  170. Jeon, D., Kim, H., Nam, K., Oh, S., Son, S.-H., & Shin, I. (2017). Cytotoxic effect of nano-SiO2 in human breast cancer cells via modulation of EGFR signaling cascades. Anticancer Research, 37, 6189–6197.

    Google Scholar 

  171. Mini, J. J., Khan, S., Aravind, M., Mol, T., Bahajjaj, A. A. A., Robert, H. M., Kumaresubitha, T., Anwar, A., & Li, H. (2024). Investigation of antimicrobial and anti-cancer activity of thermally sensitive SnO2 nanostructures with green-synthesized cauliflower morphology at ambient weather conditions. Environmental Research, 245, 117878.

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

writing—original draft preparation, A.H.; review and editing, I.K., A.A.S., T.H., r.h.k., r.m.l., h.y.k, All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Azadeh Hekmat or Ali Akbar Saboury.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hekmat, A., Haertlé, T., Leblanc, R.M. et al. A Review on Interaction of Nanomaterials of Group-XIV (G14) Elements of the Periodic Table with Proteins and DNA: Applications in Biotechnology and Pharmacy. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01423-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01423-y

Keywords

Navigation