Skip to main content
Log in

Novel Hybrid Nanostructure Hydrogel for Treating Fungal Infections: Design and Evaluation

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The aim of the current study was to fabricate and optimize lipid polymer hybrid nanoparticles (LPNPs) of ketoconazole (KTZ) through ionic gelation method with chitosan as a polymer having high biocompatibility, biodegradability, and intrinsic antifungal property. Topical hydrogels have the potential to overcome the risk of hepatotoxicity associated with conventional oral dosage forms by targeting infection sites. Hence, these hybrid structures were loaded into Carbopol hydrogel for topical treatment of superficial fungal skin infections. Particle size, zeta potential, surface morphology, entrapment efficiency, and molecular interaction were the characteristics of the optimal nanoformulation. In addition, the physical characteristics, rheology, pH, safety, and stability profile of transdermal hydrogel were described. Assays for antifungals, in vitro and ex vivo, were used to determine whether PLNPs could be used topically. The optimized nanoparticles were found to have a mean particle size of 173 nm and a polydispersity index (PDI) of 0.177. An investigation using Fourier transform infrared (FTIR) did not show any molecular interactions. The Higuchi model describes the anomalous non-Fickian drug release from the matrix system, and this is also explained by the in vitro release model. Higher zones of inhibition were obtained from an in vitro antifungal experiment on Aspergillus niger in comparison to the commercially available ketoconazole gel. Hydrogel is essential for managing the pH-sensitive release at the targeted location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Loh, J. T., & Lam, K. P. (2023). Fungal infections: Immune defense, immunotherapies and vaccines. Advanced Drug Delivery Reviews, 196, 114775. https://doi.org/10.1016/J.ADDR.2023.114775

    Article  Google Scholar 

  2. Gnat, S., Łagowski, D., Nowakiewicz, A., & Dyląg, M. (2021). A global view on fungal infections in humans and animals: Infections caused by dimorphic fungi and dermatophytoses. Journal of Applied Microbiology, 131(6), 2688–2704. https://doi.org/10.1111/jam.15084

    Article  Google Scholar 

  3. Folle, C., Marqués, A. M., Mallandrich, M., Suñer-Carbó, J., Halbaut, L., Sánchez‑López, E., … Calpena, A. C. (2024). Colloidal hydrogel systems of thymol-loaded PLGA nanoparticles designed for acne treatment. Colloids and Surfaces B: Biointerfaces, 234. https://doi.org/10.1016/J.COLSURFB.2023.113678

  4. Fisher, M. C., Alastruey-Izquierdo, A., Berman, J., Bicanic, T., Bignell, E. M., Bowyer, P., … Verweij, P. E. (2022). Tackling the emerging threat of antifungal resistance to human health. Nature Reviews Microbiology, 20(9), 557–571. https://doi.org/10.1038/S41579-022-00720-1

  5. Gadhave, D., Quadros, M., Ugale, A. R., Goyal, M., & Gupta, V. (2023). A nanoemulgel for nose-to-brain delivery of quetiapine – QbD-enabled formulation development & in-vitro characterization. International Journal of Pharmaceutics, 648. https://doi.org/10.1016/J.IJPHARM.2023.123566

  6. Khan, M. F. A., Ur. Rehman, A., Howari, H., Alhodaib, A., Ullah, F., Mustafa, Z. U., Elaissari, A., & Ahmed, N. (2022). Hydrogel Containing Solid Lipid Nanoparticles Loaded with Argan Oil and Simvastatin: Preparation, In Vitro and Ex Vivo Assessment. Gels, 8(5), 277. https://doi.org/10.3390/gels8050277

    Article  Google Scholar 

  7. Arınmış, K. N., Kıyan, H. T., & Öztürk, A. A. (2024). Preparation, characterization, antioxidant activities, and determination of anti-Alzheimer effects of PLGA-based DDSs containing ferulic acid. ACS Omega, 9(10), 11321–11338. https://doi.org/10.1021/ACSOMEGA.3C07289

    Article  Google Scholar 

  8. Nutan, B., Chandel, A. K. S., Biswas, A., Kumar, A., Yadav, A., Maiti, P., & Jewrajka, S. K. (2020). Gold nanoparticle promoted formation and biological properties of injectable hydrogels. Biomacromolecules, 21(9), 3782–3794. https://doi.org/10.1021/acs.biomac.0c00889

    Article  Google Scholar 

  9. Song, J., He, G. N., & Dai, L. (2023). A comprehensive review on celastrol, triptolide and triptonide: Insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes. Biomedicine & Pharmacotherapy, 162, 114705. https://doi.org/10.1016/J.BIOPHA.2023.114705

    Article  Google Scholar 

  10. Khizar, S., Ahmad, N. M., Zine, N., Jaffrezic-Renault, N., Errachid-El-Salhi, A., & Elaissari, A. (2021). Magnetic nanoparticles: From synthesis to theranostic applications. ACS Applied Nano Materials, 4(5), 4284–4306. https://doi.org/10.1021/acsanm.1c00852

    Article  Google Scholar 

  11. Quatrin, P. M., Kaminski, T. F. A., Berlitz, S. J., Guerreiro, I. C. K., Canto, R. F. S., & Fuentefria, A. M. (2020). Ex vivo nail infection as an effective preclinical method for screening of new topical antifungals. Journal de Mycologie Medicale, 30(2), 100938. https://doi.org/10.1016/j.mycmed.2020.100938

    Article  Google Scholar 

  12. Fields, J. R., Vonu, P. M., Monir, R. L., & Schoch, J. J. (2020). Topical ketoconazole for the treatment of androgenetic alopecia: A systematic review. Dermatologic Therapy, 33(1). https://doi.org/10.1111/dth.13202

  13. Ahmed, T. A., Badr-Eldin, S. M., Ahmed, O. A. A., & Aldawsari, H. (2018). Intranasal optimized solid lipid nanoparticles loaded in situ gel for enhancing trans-mucosal delivery of simvastatin. Journal of Drug Delivery Science and Technology, 48(July), 499–508. https://doi.org/10.1016/j.jddst.2018.10.027

    Article  Google Scholar 

  14. Lu, Y., Cheng, D., Niu, B., Wang, X., Wu, X., & Wang, A. (2023). Properties of poly (lactic-co-glycolic acid) and progress of poly (lactic-co-glycolic acid)-based biodegradable materials in biomedical research. Pharmaceuticals, 16(3). https://doi.org/10.3390/PH16030454

  15. Choi, F. D., Juhasz, M. L. W., & Atanaskova Mesinkovska, N. (2019). Topical ketoconazole: A systematic review of current dermatological applications and future developments. Journal of Dermatological Treatment, 30(8), 760–771. https://doi.org/10.1080/09546634.2019.1573309

    Article  Google Scholar 

  16. Retout, M., Blond, P., Jabin, I., & Bruylants, G. (2021). Ultrastable PEGylated calixarene-coated gold nanoparticles with a tunable bioconjugation density for biosensing applications. Bioconjugate Chemistry, 32(2), 290–300. https://doi.org/10.1021/ACS.BIOCONJCHEM.0C00669

    Article  Google Scholar 

  17. Liao, W., Badri, W., Dumas, E., Ghnimi, S., Elaissari, A., Saurel, R., & Gharsallaoui, A. (2021). Nanoencapsulation of essential oils as natural food antimicrobial agents: An overview. Applied Sciences (Switzerland), 11(13). https://doi.org/10.3390/app11135778

  18. Khan, N. H., Mir, M., Qian, L., Baloch, M., Ali Khan, M. F., Rehman, A. ur, … Ji, X. Y. (2022). Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. Journal of Advanced Research, 36(xxxx), 223–247. https://doi.org/10.1016/j.jare.2021.06.014

  19. Mohamad, T., Badri, W., Greige-gerges, H., Fessi, H., Mohamad, T., Badri, W., & Elaïssari, A. (2021). Nanoparticles / nanoplatform to carry and deliver the drug molecules to the target site. Drug delivery devices and therapeutic systems (pp. 249–266)

  20. Bashir, K., Farhan, M., Khan, A., Alhodaib, A., Ahmed, N., Naz, I., Mirza, B., Tipu, M. K., & Fatima, H. (2022). Design and evaluation of pH-sensitive nanoformulation of bergenin isolated from Bergenia ciliata. Polymers, 19, 14(9), 1639.

  21. Persano, F., Gigli, G., & Leporatti, S. (2021). Lipid-polymer hybrid nanoparticles in cancer therapy: Current overview and future directions. Nano Express, 2(1), 012006. https://doi.org/10.1088/2632-959x/abeb4b

    Article  Google Scholar 

  22. Ofridam, F., Tarhini, M., Lebaz, N., Gagnière, E., & Mangin, d, & Elaissari, A. (2021). pH-sensitive polymers : Classification and some fine potential applications. Polymers for Advanced Technologies, 32(4), 1455–1484.

    Article  Google Scholar 

  23. Dave, V., Tak, K., Sohgaura, A., Gupta, A., Sadhu, V., & Reddy, K. R. (2019). Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. Journal of Microbiological Methods, 160(March), 130–142. https://doi.org/10.1016/j.mimet.2019.03.017

    Article  Google Scholar 

  24. Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z., & Zhao, K. (2020). Chitosan derivatives and their application in biomedicine. International Journal of Molecular Sciences, 21(2). https://doi.org/10.3390/ijms21020487

  25. Negm, N. A., Hefni, H. H. H., Abd-Elaal, A. A. A., Badr, E. A., & Abou Kana, M. T. H. (2020). Advancement on modification of chitosan biopolymer and its potential applications. International Journal of Biological Macromolecules, 152, 681–702. https://doi.org/10.1016/j.ijbiomac.2020.02.196

    Article  Google Scholar 

  26. Khan, M. M., Madni, A., Torchilin, V., Filipczak, N., Pan, J., Tahir, N., & Shah, H. (2019). Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Delivery, 26(1), 765–772. https://doi.org/10.1080/10717544.2019.1642420

    Article  Google Scholar 

  27. Raman, S., Khan, A. A., & Mahmood, S. (2022). Nose to brain delivery of selegiline loaded PLGA/lipid nanoparticles: Synthesis, characterisation and brain pharmacokinetics evaluation. Journal of Drug Delivery Science and Technology, 77, 103923. https://doi.org/10.1016/J.JDDST.2022.103923

    Article  Google Scholar 

  28. Saqib, M., Shabbir Ali Bhatti, A., Ahmad, N. M., Ahmed, N., Shahnaz, G., Lebaz, N., & Elaissari, A. (2020). Amphotericin b loaded polymeric nanoparticles for treatment of leishmania infections. Nanomaterials, 10(6). https://doi.org/10.3390/nano10061152

  29. Rana, I., Khan, N., Ansari, M. M., Shah, F. A., Din, F. ud, Sarwar, S., … Zeb, A. (2020). Solid lipid nanoparticles-mediated enhanced antidepressant activity of duloxetine in lipopolysaccharide-induced depressive model. Colloids and Surfaces B: Biointerfaces, 194(20), 111209. https://doi.org/10.1016/j.colsurfb.2020.111209

  30. Qindeel, M., Ahmed, N., Sabir, F., Khan, S., & Ur-Rehman, A. (2019). Development of novel pH-sensitive nanoparticles loaded hydrogel for transdermal drug delivery. Drug Development and Industrial Pharmacy, 45(4), 629–641. https://doi.org/10.1080/03639045.2019.1569031

    Article  Google Scholar 

  31. Jana, S., Manna, S., Nayak, A. K., Sen, K. K., & Basu, S. K. (2014). Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids and Surfaces B: Biointerfaces, 114, 36–44. https://doi.org/10.1016/j.colsurfb.2013.09.045

    Article  Google Scholar 

  32. Zeb, A., Qureshi, O. S., Yu, C. H., Akram, M., Kim, H. S., Kim, M. S., … Kim, J. K. (2017). Enhanced anti-rheumatic activity of methotrexate-entrapped ultradeformable liposomal gel in adjuvant-induced arthritis rat model. International Journal of Pharmaceutics, 525(1), 92–100. https://doi.org/10.1016/j.ijpharm.2017.04.032

  33. Qureshi, O. S., Kim, H. S., Zeb, A., Choi, J. S., Kim, H. S., Kwon, J. E., … Kim, J. K. (2017). Sustained release docetaxel-incorporated lipid nanoparticles with improved pharmacokinetics for oral and parenteral administration. Journal of Microencapsulation, 34(3), 250–261. https://doi.org/10.1080/02652048.2017.1337247

  34. Dar, M. J., Din, F. U., & Khan, G. M. (2018). Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: Macrophage as a target cell. Drug Delivery, 25(1), 1595–1606. https://doi.org/10.1080/10717544.2018.1494222

    Article  Google Scholar 

  35. Hayat, M., Nawaz, A., Chinnam, S., Muzammal, M., Latif, M. S., Yasin, M., … Farid, A. (2023). Formulation development and optimization of herbo synthetic gel: In vitro biological evaluation and in vivo wound healing studies. Process Biochemistry, 130, 116–126. https://doi.org/10.1016/J.PROCBIO.2023.04.010

  36. Farooq, M., Usman, F., Zaib, S., Shah, H. S., Jamil, Q. A., Sheikh, F. A., … Khan, I. (2022). Fabrication and evaluation of voriconazole loaded transethosomal gel for enhanced antifungal and antileishmanial activity. Molecules, 27(10), 3347. https://doi.org/10.3390/MOLECULES27103347

  37. Schröder, A., Sprakel, J., Schroën, K., Spaen, J. N., & Berton-Carabin, C. C. (2018). Coalescence stability of Pickering emulsions produced with lipid particles: A microfluidic study. Journal of Food Engineering, 234, 63–72. https://doi.org/10.1016/j.jfoodeng.2018.04.007

    Article  Google Scholar 

  38. Farooq, M., Usman, F., Naseem, M., Aati, H. Y., Ahmad, H., Manee, S., … Umair, M. (2023). Voriconazole cyclodextrin based polymeric nanobeads for enhanced solubility and activity: In vitro/in vivo and molecular simulation approach. Pharmaceutics, 15(2). https://doi.org/10.3390/pharmaceutics15020389

  39. Mahmood, S., Kiong, K. C., Tham, C. S., Chien, T. C., Hilles, A. R., & Venugopal, J. R. (2020). PEGylated lipid polymeric nanoparticle–encapsulated acyclovir for in vitro controlled release and ex vivo gut sac permeation. An Official Journal of the American Association of Pharmaceutical Scientists, 21(7), 1–15. https://doi.org/10.1208/S12249-020-01810-0/TABLES/8

    Article  Google Scholar 

  40. Usman, F., Farooq, M., Wani, T. A., Ahmad, H., Javed, I., Iqbal, M., … Sheikh, S. (2023). Itraconazole loaded biosurfactin micelles with enhanced antifungal activity: Fabrication, evaluation and molecular simulation. Antibiotics, 12(10). https://doi.org/10.3390/antibiotics12101550

  41. Jaafar-Maalej, C., Diab, R., Andrieu, V., Elaissari, A., & Fessi, H. (2010). Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. Journal of Liposome Research, 20(3), 228–243. https://doi.org/10.3109/08982100903347923

    Article  Google Scholar 

  42. Qureshi, O. S., Zeb, A., Akram, M., Kim, M. S., Kang, J. H., Kim, H. S., … Kim, J. K. (2016). Enhanced acute anti-inflammatory effects of CORM-2-loaded nanoparticles via sustained carbon monoxide delivery. European Journal of Pharmaceutics and Biopharmaceutics, 108, 187–195. https://doi.org/10.1016/j.ejpb.2016.09.008

  43. Tarhini, M., Benlyamani, I., Hamdani, S., Agusti, G., Fessi, H., Greige-Gerges, H., … Elaissari, A. (2018). Protein-based nanoparticle preparation via nanoprecipitation method. Materials, 11(3), 1–18. https://doi.org/10.3390/ma11030394

  44. Md, S., Kuldeep Singh, J. K. A., Waqas, M., Pandey, M., Choudhury, H., Habib, H., … Hussain, Z. (2019). Nanoencapsulation of betamethasone valerate using high pressure homogenization–solvent evaporation technique: Optimization of formulation and process parameters for efficient dermal targeting. Drug Development and Industrial Pharmacy, 45(2), 323–332. https://doi.org/10.1080/03639045.2018.1542704

  45. Ahmad, I., Khan, M. F. A., Rahdar, A., Hussain, S., Tareen, F. K., Salim, M. W., … Khan, A. (2022). Design and evaluation of pH sensitive PEG-protamine nanocomplex of doxorubicin for treatment of breast cancer. Polymers, 14(12), 2403. https://doi.org/10.3390/polym14122403

  46. Azeez, L., Lateef, A., Adejumo, A. L., Adeleke, J. T., Adetoro, R. O., & Mustapha, Z. (2020). Adsorption behaviour of rhodamine B on hen feather and corn starch functionalized with green synthesized silver nanoparticles (AgNPs) mediated with cocoa pods extracts. Chemistry Africa, 3(1), 237–250. https://doi.org/10.1007/s42250-019-00113-7

    Article  Google Scholar 

  47. Rauf, A., Razzaq, S., Tabish, T. A., Tahseen, S., Sandhu, M. A., & Shahnaz, G. (2021). Investigating the intracellular bactericidal effects of rifampicin loaded S-protected thiomeric chitosan nanocargoes against Mycobacterium tuberculosis. Journal of Drug Delivery Science and Technology, 61, 102184. https://doi.org/10.1016/j.jddst.2020.102184

    Article  Google Scholar 

  48. Hasan, A. S., Socha, M., Lamprecht, A., Ghazouani, F. El, Sapin, A., Hoffman, M., … Ubrich, N. (2007). Effect of the microencapsulation of nanoparticles on the reduction of burst release. International Journal of Pharmaceutics, 344(1–2), 53–61. https://doi.org/10.1016/j.ijpharm.2007.05.066

  49. Chen, H., Chang, X., Du, D., Li, J., Xu, H., & Yang, X. (2006). Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. International Journal of Pharmaceutics, 315(1–2), 52–58. https://doi.org/10.1016/j.ijpharm.2006.02.015

    Article  Google Scholar 

  50. Ullah, I., Farooq, A. S., Naz, I., Ahmad, W., Ullah, H., Sehar, S., & Nawaz, A. (2023). Fabrication of polymeric hydrogels containing esomeprazole for oral delivery: In vitro and in vivo pharmacokinetic characterization. Polymers, 15(7). https://doi.org/10.3390/polym15071798

  51. Ullah, F., Farhan, M., Khan, A., Khan, N. H., Rehman, M. F., Shah, S. S., … Shi, H. (2022). Simvastatin-loaded lipid emulsion nanoparticles: Characterizations and applications. https://doi.org/10.1021/acsomega.2c02242

  52. Puri, A., Frempong, D., Mishra, D., & Dogra, P. (2021). Microneedle-mediated transdermal delivery of naloxone hydrochloride for treatment of opioid overdose. International Journal of Pharmaceutics, 604(April), 120739. https://doi.org/10.1016/j.ijpharm.2021.120739

    Article  Google Scholar 

  53. Din, F. ud, Saleem, S., Aleem, F., Ahmed, R., Huda, N. ul, Ahmed, S., … Aman, W. (2018). Advanced colloidal technologies for the enhanced bioavailability of drugs. Cogent Medicine, 5(1), 1480572. https://doi.org/10.1080/2331205x.2018.1480572

  54. Patil, S. G., Jadhav, V. M., & Kadam, V. J. (2012). Formulation and evaluation of herbal gel. Indian Journal of Natural Products and Resources, 3(4), 501–505.

    Google Scholar 

  55. Kawar, D., & Abdelkader, H. (2019). Hyaluronic acid gel-core liposomes (hyaluosomes) enhance skin permeation of ketoprofen. Pharmaceutical Development and Technology, 24(8), 947–953. https://doi.org/10.1080/10837450.2019.1572761

    Article  Google Scholar 

  56. Khalid, A., Ahmed, N., Qindeel, M., Asad, M. I., Khan, G. M., & ur Rehman, A. (2021). Development of novel biopolymer-based nanoparticles loaded cream for potential treatment of topical fungal infections. Drug Development and Industrial Pharmacy, 1–10. https://doi.org/10.1080/03639045.2021.1957914

Download references

Acknowledgements

We are thankful to the Department of Pharmacy for providing us lab facilities.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.U.K.; methodology, A.U.R. and K.S.M.; supervision, N.A.; visualization, S.A.R.; writing—original draft, M.U.K.; writing—review and editing, M.F.A.K., A.E., and N.A.

Corresponding author

Correspondence to Naveed Ahmed.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None.

Informed Consent

Not applicable.

Ethical Approval

All applicable institutional guidelines for the care and use of animals were followed.

Institutional Review Board Statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.U., Rehman, A.u., Khan, M.F.A. et al. Novel Hybrid Nanostructure Hydrogel for Treating Fungal Infections: Design and Evaluation. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01419-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01419-8

Keywords

Navigation