Skip to main content
Log in

A Study on the Antipathogenic Effects of Nanoemulsion Against V. parahaemolyticus in Shrimp Aquaculture: Antibacterial and Antibiofilm Activities

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Antimicrobial resistance is a significant concern in aquaculture, prompting the exploration of nanoemulsions (NEs) with a non-resistant mode of action as a safer and more effective alternative to antibiotics. In Asian countries, the culture of Penaeus vannamei has faced growing concerns as V. parahaemolyticus (Vp) has been increasingly linked to shrimp diseases, leading to huge economic losses. In response, stable ozonated oil-in-water NEs (NE-25, 26, 28, 29) were produced using a microfluidization method and characterized by their polydispersity index and average droplet size (NE-25, 26, 28, 29), which were found to 0.108, 0.251, 0.223, 0.173, and 229.7nm, 190.2nm, 201.8nm, and 145.8nm, respectively. The therapeutic potential of NEs is tested against pathogenic strains having tdh and toxR virulence gene, which were isolated from diseased shrimp (VP-S7 and VP-S14), these were found to be more resistant compared to commercial V. parahaemolyticus (MTCC-451) strain. Our NEs confirmatory antibacterial tests include bacteriostatic, bactericidal, antibiofilm, adherence, live/dead assays, and oxygen consumption rate (OCR) studies. All tested nanoemulsions showed effectiveness against planktonic and biofilm stages of V. parahaemolyticus; NE-25 showed strong adherence inhibition, with results of VP-S7 (49.55%), VP-S14 (53.47%), and MTCC-451 (68.76%). The biofilm inhibition of NE-25 (55.97%) is comparable to inhibition with antibiotics gentamicin (58.73%). The NE OCR results (1 × 107 cell/ml) compared to antibiotics treated and untreated, the fold reduction for NE-28 (0.2) is highly significant when compared with commercial antibiotics (0.6) and the growth control (1.0). Therefore, using NEs, which possess high antibacterial properties, is a promising alternative for treating V. parahaemolyticus compared to current antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Kooloth, V. R., Stentiford, G. D., & Bass, D. (2021). The rise of the syndrome–sub-optimal growth disorders in farmed shrimp. Reviews in Aquaculture, 13, 41888–41906. https://doi.org/10.1111/raq.12550

  2. Little, D. C., Newton, R. W., & Beveridge, M. C. M. (2016). Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential. Proceedings of the Nutrition Society, 75(3), 274–286. https://doi.org/10.1017/S0029665116000665

    Article  Google Scholar 

  3. Albalat, A., Zacarias, S., Coates, C. J., Neil, D. M., & Planellas, S. R. (2022). Welfare in farmed decapod crustaceans, with particular reference to Penaeus vannamei. Frontiers in Marine Science, 09, 886024. https://doi.org/10.3389/fmars.2022.886024

    Article  Google Scholar 

  4. Ghosh, A. K., Panda, S. K., & Luyten, W. (2021). Anti-vibrio and immune-enhancing activity of medicinal plants in shrimp: A comprehensive review. Fish & Shellfish Immunology, 117, 192–210. https://doi.org/10.1016/j.fsi.2021.08.006

    Article  Google Scholar 

  5. Gunalan, B., Soundarapandian, P., Anand, T., Kotiya, A. S., & Simon, N. T. (2014). Disease occurrence in Litopenaeus vannamei shrimp culture systems in different geographical regions of India. International Journal of Aquatic Biology, 10, 4. https://doi.org/10.5376/ija.2014.04.0004

    Article  Google Scholar 

  6. Tan, L. T. H., Chan, K. G., Lee, L. H., & Goh, B. H. (2016). Streptomyces bacteria as potential probiotics in aquaculture. Frontiers in Microbiology, 7, 79. https://doi.org/10.3389/fmicb.2016.00079

    Article  Google Scholar 

  7. Letchumanan, V., Chan, K. G., & Lee, L. H. (2014). Vibrio parahaemolyticus: A review on the pathogenesis, prevalence, and advance molecular identification techniques. Frontiers in Microbiology, 5, 705. https://doi.org/10.3389/fmicb.2014.00705

    Article  Google Scholar 

  8. Wang, L., Chen, Y., Huang, H., Huang, Z., Chen, H., & Shao, Z. (2015). Isolation and identification of Vibrio campbellii as a bacterial pathogen for luminous vibriosis of Litopenaeus vannamei. Aquaculture Research, 46(2), 395–404. https://doi.org/10.1111/are.12191

    Article  Google Scholar 

  9. Raja, R. A., Sridhar, R., Balachandran, C., Palanisammi, A., Ramesh, S., & Nagarajan, K. (2017). Prevalence of Vibrio spp. with special reference to Vibrio parahaemolyticus in farmed penaeid shrimp Penaeus vannamei (Boone, 1931) from selected districts of Tamil Nadu, India. Indian Journal of Fisheries, 64(3):122–128. https://doi.org/10.21077/ijf.2017.64.3.69011-18

  10. Narayanan, S. V., Joseph, T. C., Peeralil, S., Koombankallil, R., Vaiyapuri, M., Mothadaka, M. P., & Lalitha, K. V. (2020). Tropical shrimp aquaculture farms harbour pathogenic Vibrio parahaemolyticus with high genetic diversity and Carbapenam resistance. Marine Pollution Bulletin, 160, 111551. https://doi.org/10.1016/j.marpolbul.2020.111551

    Article  Google Scholar 

  11. Kumar, B. K., Deekshit, V. K., Raj, J. R. M., Rai, P., Shivanagowda, B. M., Karunasagar, I., & Karunasagar, I. (2014). Diversity of Vibrio parahaemolyticus associated with disease outbreak among cultured Litopenaeus vannamei (Pacific white shrimp) in India. Aquaculture, 433, 247–251. https://doi.org/10.1016/j.aquaculture.2014.06.016

    Article  Google Scholar 

  12. Kumar, R., Tung, T. C., Ng, T. H., Chang, C. C., Chen, Y. L., Chen, Y. M., Lin, S. S., & Wang, H. C. (2021). Metabolic alterations in shrimp stomach during acute hepatopancreatic necrosis disease and effects of taurocholate on Vibrio parahaemolyticus. Frontiers in Microbiology, 12, 631468. https://doi.org/10.3389/fmicb.2021.631468

    Article  Google Scholar 

  13. Ahmed, J., Khan, M. H., Unnikrishnan, S., & Ramalingam, K. (2022). Acute hepatopancreases necrosis diseases (AHPND) as challenging threat in shrimp. Biointerface Research in Applied Chemistry, 12(1), 978–991. https://doi.org/10.33263/briac121.978991

  14. Dash, P., Avunje, S., Tandel, R. S., KP, S., & Panigrahi, A. (2017). Biocontrol of luminous vibriosis in shrimp aquaculture: A review of current approaches and future perspectives. Reviews in Fisheries Science & Aquaculture, 25(3), 245–255. https://doi.org/10.1080/23308249.2016.1277973

    Article  Google Scholar 

  15. Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Reviews, 39(1), 1–22. https://doi.org/10.1186/s40985-018-0099-2

    Article  Google Scholar 

  16. Alloul, A., Wille, M., Lucenti, P., Bossier, P., Van Stappen, G., & Vlaeminck, S. E. (2021). Purple bacteria as added-value protein ingredient in shrimp feed: Penaeus vannamei growth performance, and tolerance against Vibrio and ammonia stress. Aquaculture, 530, 735788. https://doi.org/10.1016/j.aquaculture.2020.735788

    Article  Google Scholar 

  17. Kumar, M., Bishnoi, R. S., Shukla, A. K., & Jain, C. P. (2019). Techniques for formulation of nanoemulsion drug delivery system: A review. Preventive Nutrition and Food Science, 24(3), 225. https://doi.org/10.3746/pnf.2019.24.3.225

    Article  Google Scholar 

  18. Hosseini, S. F., Ramezanzade, L., & McClements, D. J. (2021). Recent advances in nanoencapsulation of hydrophobic marine bioactives: Bioavailability, safety, and sensory attributes of nano-fortified functional foods. Trends in Food Science & Technology, 109, 322–339. https://doi.org/10.1016/j.tifs.2021.01.045

    Article  Google Scholar 

  19. Karthik, P., Ezhilarasi, P. N., & Anandharamakrishna, C. (2017). Challenges associated in stability of food grade nanoemulsions. Critical Reviews in Food Science and Nutrition, 57(7), 1435–1450. https://doi.org/10.1080/10408398.2015.1006767

    Article  Google Scholar 

  20. Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release–A review. International Journal of Food Science & Technology, 41(1), 1–21. https://doi.org/10.1111/j.1365-2621.2005.00980.x

    Article  Google Scholar 

  21. Zimet, P., Rosenberg, D., & Livney, Y. D. (2011). Re-assembled casein micelles and casein nanoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids, 25(5), 1270–1276. https://doi.org/10.1016/j.foodhyd.2010.11.025

    Article  Google Scholar 

  22. Belhaj, N., Arab-Tehrany, E., & Linder, M. (2010). Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin. Process Biochemistry, 45(2), 187–195. https://doi.org/10.1016/j.procbio.2009.09.005

    Article  Google Scholar 

  23. Yuan, Y., Gao, Y., Zhao, J., & Mao, L. (2008). Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International, 41(1), 61–68. https://doi.org/10.1016/j.foodres.2007.09.006

    Article  Google Scholar 

  24. Wang, X., Jiang, Y., Wang, Y. W., Huang, M. T., Ho, C. T., & Huang, Q. (2008). Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chemistry, 108(2), 419–424. https://doi.org/10.1016/j.foodchem.2007.10.086

    Article  Google Scholar 

  25. Lawrence, M. J., & Rees, G. D. (2012). Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, 64, 175–193. https://doi.org/10.1016/j.addr.2012.09.018

    Article  Google Scholar 

  26. Teixeira, P. C., Leite, G. M., Domingues, R. J., Silva, J., Gibbs, P. A., & Ferreira, J. P. (2007). Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. International Journal of Microbiology, 118(1), 15–19. https://doi.org/10.1016/j.ijfoodmicro.2007.05.008

    Article  Google Scholar 

  27. Ramalingam, K., Amaechi, B. T., Ralph, R. H., & Lee, V. A. (2012). Antimicrobial activity of nanoemulsion on cariogenic planktonic and biofilm organisms. Archives of Oral Biology, 57(1), 15–22. https://doi.org/10.1016/j.archoralbio.2011.07.001

    Article  Google Scholar 

  28. Jangam, A. K., Bhuvaneswari, T., Krishnan, A. N., Katneni, V. K., Avunje, S., Grover, M., Kumar, S., Alavandi, S. V., & Vijayan, K. K. (2018). Draft genome sequence of Vibrio parahaemolyticus strain VP14, isolated from a Penaeus vannamei culture farm. Genome Announcements, 6(11), 00149–00218. https://doi.org/10.1128/genomeA.00149-18

    Article  Google Scholar 

  29. Li, W., Chen, H., He, Z., Han, C., Liu, S., & Li, Y. (2015). Influence of surfactant and oil composition on the stability and antibacterial activity of eugenol nanoemulsions. LWT-Food Science and Technology, 62(1), 39–47. https://doi.org/10.1016/j.lwt.2015.01.012

    Article  Google Scholar 

  30. Kaur, H., Pancham, P., Kaur, R., Agarwal, S., & Singh, M. (2020). Synthesis and characterization of Citrus limonum essential oil based nanoemulsion and its enhanced antioxidant activity with stability for transdermal application. Journal of Biomaterials and Nanobiotechnology, 11(4), 215–236. https://doi.org/10.4236/jbnb.2020.114014

    Article  Google Scholar 

  31. Gholipourkanani, H., Buller, N., & Lymbery, A. (2019). In vitro antibacterial activity of four nano-encapsulated herbal essential oils against three bacterial fish pathogens. Aqua Research, 50(3), 871–875. https://doi.org/10.1111/are.13959

    Article  Google Scholar 

  32. Ramalingam, K., & Lee, V. (2019). Biotic and abiotic substrates for enhancing Acinetobacter baumannii biofilm formation: New approach using extracellular matrix and slanted coverslip technique. The Journal of General and Applied Microbiology, 65(2), 64–71. https://doi.org/10.2323/jgam.2018.05.004

    Article  Google Scholar 

  33. Wang, X. H., & Leung, K. Y. (2000). Biochemical characterization of different types of adherence of Vibrio species to fish epithelial cells. Microbiology, 146(4), 989–998. https://doi.org/10.1099/00221287-146-4-989

    Article  Google Scholar 

  34. Khan, M. H., & Ramalingam, K. (2019). Synthesis of antimicrobial nanoemulsions and its effectuality for the treatment of multi-drug resistant ESKAPE pathogens. Biocatalysis and Agricultural Biotechnology, 18, 101025. https://doi.org/10.1016/j.bcab.2019.101025

    Article  Google Scholar 

  35. Xie, T., Liao, Z., Lei, H., Fang, X., Wang, J., & Zhong, Q. (2017). Antibacterial activity of food-grade chitosan against Vibrio parahaemolyticus biofilms. Microbiology in Clinical Pathology, 110, 291–297. https://doi.org/10.1016/j.micpath.2017.07.011

    Article  Google Scholar 

  36. Stiefel, P., Schmidt-Emrich, S., Maniura-Weber, K., & Ren, Q. (2015). Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiology, 15, 1–9. https://doi.org/10.1186/s12866-015-0376-x

    Article  Google Scholar 

  37. Cal-Sabater, P., Caro, I., Castro, M. J., Cao, M. J., Mateo, J., & Quinto, E. J. (2019). Flow cytometry to assess the counts and physiological state of Cronobacter sakazakii cells after heat exposure. Foods, 8(12), 688. https://doi.org/10.3390/foods8120688

    Article  Google Scholar 

  38. Aashique, M., Roy, A., Kosuru, R. Y., & Bera, S. (2021). Membrane depolarization sensitizes Pseudomonas aeruginosa against tannic acid. Current Microbiology, 78, 713–717. https://doi.org/10.1007/s00284-020-02330-7

    Article  Google Scholar 

  39. Yuan, Y., Gao, Y., Zhao, J., & Mao, L. (2008). Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International, 41(1), 61–68. https://doi.org/10.1016/j.foodres.2007.09.006

    Article  Google Scholar 

  40. Rahnama, M., Anvar, S. A., Ahari, H., & Kazempoor, R. (2021). Antibacterial effects of extracted corn zein with garlic extract-based nanoemulsion on the shelf life of Vannamei prawn (Litopenaeus vannamei) at refrigerated temperature. Journal of Food Science, 86(11), 4969–4990. https://doi.org/10.1111/1750-3841.15923

    Article  Google Scholar 

  41. Horison, R., Sulaiman, F. O., Alfredo, D., & Wardana, A. A. (2019). Physical characteristics of nanoemulsion from chitosan/nutmeg seed oil and evaluation of its coating against microbial growth on strawberry. Food Research, 3(6), 821–827. https://doi.org/10.26656/fr.2017.3(6).159

    Article  Google Scholar 

  42. Rohman, A., & Man, Y. C. (2010). Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Research International, 43(3), 886–892. https://doi.org/10.1016/j.foodres.2009.12.006

    Article  Google Scholar 

  43. Osanloo, M., Firooziyan, S., Abdollahi, A., Hatami, S., Nematollahi, A., Elahi, N., & Zarenezhad, E. (2022). Nanoemulsion and nanogel containing Artemisia dracunculus essential oil; larvicidal effect and antibacterial activity. BMC Research Notes, 15(1), 276. https://doi.org/10.1186/s13104-022-06135-8

    Article  Google Scholar 

  44. de Meneses, A. C., Sayer, C., Puton, B. M., Cansian, R. L., Araújo, P. H., & de Oliveira, D. (2019). Production of clove oil nanoemulsion with rapid and enhanced antimicrobial activity against gram-positive and gram-negative bacteria. Journal of Water Process Engineering, 42(6), 13209. https://doi.org/10.1111/jfpe.13209

    Article  Google Scholar 

  45. Pérez-Córdoba, L. J., Norton, I. T., Batchelor, H. K., Gkatzionis, K., Spyropoulos, F., & Sobral, P. J. (2018). Physico-chemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocolloids, 79, 544–559. https://doi.org/10.1016/j.foodhyd.2017.12.012

    Article  Google Scholar 

  46. Hwang, Y. Y., Ramalingam, K., Bienek, D. R., Lee, V., You, T., & Alvarez, R. (2013). Antimicrobial activity of nanoemulsion in combination with cetylpyridinium chloride in multidrug-resistant Acinetobacter baumannii. Antimicrobial agents and chemotherapy, 57(8), 3568–3575. https://doi.org/10.1128/aac.02109-12

    Article  Google Scholar 

  47. Karan, S., Choudhury, D., & Dixit, A. (2021). Immunogenic characterization and protective efficacy of recombinant CsgA, major subunit of curli fibers, against Vibrio parahaemolyticus. Applied Microbiology and Biotechnology, 105, 599–616. https://doi.org/10.1007/s00253-020-11038-4

    Article  Google Scholar 

  48. Yeh, Y. C., Huang, T. H., Yang, S. C., Chen, C. C., & Fang, J. Y. (2020). Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Frontiers in chemistry, 8, 286. https://doi.org/10.3389/fchem.2020.00286

    Article  Google Scholar 

  49. Roy, P. K., Park, S. H., Song, M. G., & Park, S. Y. (2022). Antimicrobial Efficacy of Quercetin against Vibrio parahaemolyticus biofilm on food surfaces and downregulation of virulence genes. Polymers, 14(18), 3847. https://doi.org/10.3390/polym14183847

    Article  Google Scholar 

  50. Liu, H., Zhu, W., Cao, Y., Gao, J., Jin, T., Qin, N., & Xia, X. (2022). Punicalagin inhibits biofilm formation and virulence gene expression of Vibrio parahaemolyticus. Food Control, 139, 109045. https://doi.org/10.1016/j.foodcont.2022.109045

    Article  Google Scholar 

  51. Sahli, C., Moya, S. E., Lomas, J. S., Gravier-Pelletier, C., Briandet, R., & Hémadi, M. (2022). Recent advances in nanotechnology for eradicating bacterial biofilm. Theranostics, 12(5), 2383. https://doi.org/10.7150/thno.67296

    Article  Google Scholar 

  52. Deng, Y., Wang, L., Chen, Y., & Long, Y. (2020). Optimization of staining with SYTO 9/propidium iodide: Interplay, kinetics and impact on Brevibacillus brevis. Biotechniques, 69(2), 88–98. https://doi.org/10.2144/btn-2020-0036

    Article  Google Scholar 

  53. Kosuru, R. Y., Aashique, M., Fathima, A., Roy, A., & Bera, S. (2018). Revealing the dual role of gallic acid in modulating ampicillin sensitivity of Pseudomonas aeruginosa biofilms. Future Microbiology, 13(3), 297–312. https://doi.org/10.2217/fmb-2017-0132

    Article  Google Scholar 

  54. Ahmed, J., Navabshan, I., Unnikrishnan, S., Radhakrishnan, L., Vasagam, K. K., & Ramalingam, K. (2023). In silico and In vitro investigation of phytochemicals against shrimp AHPND syndrome causing PirA/B toxins of vibrio parahaemolyticus. Applied Biochemistry and Biotechnology, 195(12), 7176–7196. https://doi.org/10.1007/s12010-023-04458-1

  55. Tavares, T. M. B., Almeida, H. M. D. E. S., Lage, M. V. M., de Carvalho Feitosa, R., & da Silva Júnior, A. A. (2023). Nanoemulsions: A promising strategy in the fight against bacterial infections. In Medical sciences forum (Vol. 24, No. 1, p. 18). MDPI. https://doi.org/10.3390/ECA2023-16402

Download references

Acknowledgements

We acknowledge B. S. Abdur Rahman Crescent Institute of Science and Technology for providing the facility to perform this research; and Dr. Sneha Unnikrishnan for data curation, formal analysis, and investigation. We thank Dr. Soumen Bera and Mr Md. Aashique for their help in doing OCR studies using the Clarke electrode-polygraph instrument.

Funding

This work was supported by the Indian Council of Medical Research [Project ID: 2020–4964].

Author information

Authors and Affiliations

Authors

Contributions

Jahangir Ahmed: All experimental work, data curation, formal analysis, investigation, methodology, and writing of the original draft. Dr. Karthikeyan Ramalingam: conceptualization, supervision; validation; writing, review, and editing.

Corresponding author

Correspondence to Karthikeyan Ramalingam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None.

Informed Consent

Not applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and agreed to the manuscript for publication.

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, J., Ramalingam, K. A Study on the Antipathogenic Effects of Nanoemulsion Against V. parahaemolyticus in Shrimp Aquaculture: Antibacterial and Antibiofilm Activities. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01375-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01375-3

Keywords

Navigation