Skip to main content
Log in

Soliton-Based Signaling Communication and Supermolecular Nano-complex by DDMC/PTX in Tumor Microenvironment

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Drug delivery systems (DDSs) using DEAE-dextran-MMA graft copolymer (DDMC)/Paclitaxel (PTX) have shown excellent anticancer activity when used as artificial enzymes in a tumor microenvironment (TME). Treatment with DDMC/sncRNA complex also showed a full recovery of mice from virus-induced sarcoma after changing cancer cells to normal cells. The kinetics of normalized relation of dose rate to cell death rate by using DDMC/PTX appears as a Sigmoid, and does not change in shape and velocity during the reaction period of MTT Assay at different times. The transport phenomena involving conserved energy (NSL(x)), momentum (SGSoliton(x)), and mass (Sig(x)) correspond to the same direction, which proves the solitonic behavior. A supermolecular complex created using DDMC/PTX oscillates, which can be explained by Toda lattice and acts like a Sigmoid from SG-Soliton wave. Signal transduction for this DDS must be the Sigmoid of soliton followed by transfer of conserved energy, momentum, and mass transfer. The soliton signal could explain the stability and sustainability of these feedback control systems. The block diagram of this signal system in a TME is shown using its loop transfer function G(s) and dN(s) of external force. This indicial response was ideal without any time lag of outlet response owing to soliton. The cell outlet/inlet response by DDMC/PTX must be on soliton signal wave that retains its energy and shape without jamming communication. By soliton flow, the result shows both equations of classical control theory and quantum mechanics can be related to chemistry of induced fit model by Hill Equation S-shaped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article.

Abbreviations

DDMC:

Diethylaminoethyl-dextran-methacrylic acid methyl ester copolymer

TME:

Tumor microenvironment

TCA:

Cycle-tricarboxylic acid cycle

sncRNAs:

Small non-coding RNAs

PTX:

Paclitxel

NSL(x):

Nonlinear Schrodinger equation

SGSoliton(x):

The Sine-Gordon equation

Sig(x):

Sigmoid equation (logistic equation, Fisher KPP equation)

References

  1. Klimenko, O., & Sidorov, A. (2019). The full recovery of mice (mus musculus c57bl/6 strain) from virus-induced sarcoma after treatment with a complex of ddmc delivery system and sncrnas. Non-coding RNA Research, 4, 69–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lehn, J. (1988). Supramolecular chemistry-scope and perspectives molecules, supermolecules-molecular devices. AngewChem, 100, 91–116.

    ADS  CAS  Google Scholar 

  3. Onishi, Y., Eshitai, Y., Jii, R., et al. (2014). Anticancer efficacy of a nanoparticle using a supramolecular complex by 2-diethylaminoethyl(deae)-dextran-mma graft copolymer/paclitaxel as an artificial enzyme. The Beilstein Journal of Nanotechnology, 5, 2293–2307.

    Google Scholar 

  4. Filippov, A. (2000). The Versatile Soliton: Modern Birkhauser Classics. Boston: Birkhauser.

    Google Scholar 

  5. Braun, O., & Kivshar, Y. (2004). The Frenkel-Kontorova Model: Concepts, Methods, and Applications. Berlin: Springer-Verlag.

    Google Scholar 

  6. Novikov, S. P., Manakov, S. V., Pitaevskiii, L. P., et al. (1984). Theory of Solitons: The Inverse Scattering Method. Berlin: Springer-Verlag.

    Google Scholar 

  7. Helmholtz, H. (1850). Messungen uber den zeitlichen verlauf der zuchung animalisher muskeln und die fortplanzungsgeschwindig-keit der reizung in der nerven. Arch Anat Physiol, 276, 71–73.

    Google Scholar 

  8. Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fitzhugh, R. (1969). Biological Engineering. New York: McGraw-Hill.

    Google Scholar 

  10. Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50, 2061–2070.

    Google Scholar 

  11. Scott, A. (1979). Sine-gordon breather dynamics. Physica Scripta, 20, 395–401.

    ADS  MathSciNet  Google Scholar 

  12. Onishi, Y., Eshitai, Y., Ji, R., et al. (2018). A robust control system for targeting melanoma by a supermolecular ddmc/paclitaxel complex. Integrative Biology, 10, 549–554.

    CAS  PubMed  Google Scholar 

  13. Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 12(Pt 1), 6387–6392.

    Google Scholar 

  14. Allen, T. M., & Chonn, A. (1987). Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Letters, 223, 42–46.

    CAS  PubMed  Google Scholar 

  15. Oku, N., Namba, Y., & Okada, S. (1992). Tumor accumulation of novel res-avoiding liposomes. Biochim Biophys, 1126, 255–260.

    CAS  Google Scholar 

  16. Savic, R., Luo, L., Eisenberg, A., et al. (2003). Micellar nanocontainers distribute to defined cytoplasmic organelles. Science, 300, 615–618.

    ADS  CAS  PubMed  Google Scholar 

  17. Hamblin, M., Miller, J., Rizvi, I., et al. (2001). Polymer conjugate increases tumor targeting of photosensitizer. Cancer Research, 61, 7155–7162.

    CAS  PubMed  Google Scholar 

  18. Nishiyama, N., Nor, A., Malugin, B. A., et al. (2003). Free and n-(2-hydroxypropyl)methacrylamide copolymer-bound geldanamycin derivative induce different stress responses in a2780 human ovarian. Cancer Research, 63, 7876–7882.

    CAS  PubMed  Google Scholar 

  19. Onishi, Y., Maruno, S., Kamiya, S., et al. (1978). Preparation and characteristics of dextran-methyl methacrylate graft copolymer. Polymer, 19, 1325–1328.

    CAS  Google Scholar 

  20. Onishi, Y. (1980). Effects of dextran molecular weight on graft copolymerization of dextran-methyl methacrylate. Polymer, 21, 819–824.

    CAS  Google Scholar 

  21. Onishi, Y., Eshita, Y., Murashita, A., et al. (2005). Synthesis and characterization of 2-diethylaminoethyl(deae)-dextran-mma graft copolymer for non-viral gene delivery vector. Journal of Applied Polymer Science, 98, 9–14.

    CAS  Google Scholar 

  22. Onishi, Y., Eshita, Y., Murashita, A., et al. (2007). Characteristics of 2-diethylaminoethyl(deae)-dextran-mma graft copolymer as a non-viral gene carrier. Nanomedicine: Nanotech. Biologie et Médecine, 3, 184–191.

    CAS  Google Scholar 

  23. Yguerabide, J., & Yguerabide, E. E. (1998). Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. AnalBiochem, 262, 137–156.

    CAS  Google Scholar 

  24. Nakano, T., Takewaki, K., Yade, B. T., et al. (2001). Dibenzofulvene, a 1,1- diphenylethylene analogue, gives a \(\pi \)-stacked polymer by anionic, free-radical, and cationic catalysts. JACS, 123, 9183–9183.

    Google Scholar 

  25. Yomosa, S. (1982). Solitary waves in one-dimensional hydrogen-bonded systems. PJhysSocJapan, 52, 1866–1873.

    ADS  Google Scholar 

  26. Koshland, D. (1958). Application of a theory of enzyme specificity to protein synthesis. PNAS, 44, 98–104.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hideshima, T., & Kato, Y. (2006). Oscillatory reaction of catalase wrapped by liposome. Biophysical Chemistry, 124, 100–105.

    CAS  PubMed  Google Scholar 

  28. Miyano, S. (2011). Cancer and supercomputer. CICSJ. Bulletin, 29, 42–48.

    Google Scholar 

  29. Eshita, Y., Ji, R., Onishi, M., et al. (2012). Supramolecular facilities to melanoma cells b16f10 with nanoparticles of a deae-dextran-mma copolymer-paclitaxel complex. Journal of Nanoscience and Nanotechnology, S5, 1–6.

    Google Scholar 

  30. Cheng, Y., & Prusoff, W. (1973). Relationship between the inhibition constant (ki) and the concentration of inhibitor which causes 50 per cent inhibition (i50) of an enzymatic reaction. Biochemical Pharmacology, 22, 3099–3108.

  31. Hill, V. (1910). The possible effects of the aggregation of the molecules of haemoblobin on its dissociation curve. Journal of Physiology, 40(Suppl), iv–vii.

    Google Scholar 

  32. Wylie, C., Jr. (1980). Advanced Mathemaric Engineering. New York: McGrow-hill.

    Google Scholar 

  33. Bellman, R. (1964). Control theory. Scientific American, 211, 186–200.

    CAS  PubMed  Google Scholar 

  34. Frank, S. (2013). Input-output relations in biological systems: measurement, information and the hill equation. Biology Direct, 8, 1–25.

    Google Scholar 

  35. Haiech, J. (2014). A general framework improving teaching ligand binding to a macromolecule. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1843:2348–2355.

  36. Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5, 826–837.

    CAS  PubMed  Google Scholar 

  37. Buckingham, E. (1914). On physically similar systems, illustrations of the use of dimensional analysis. Physical Review, 4, 345–376.

    ADS  Google Scholar 

  38. Klinkenberg, A. (1955). Dimensional systems and systems of units in physics with special reference to chemical engineering: Part i. the principles according to which dimensional systems and systems of units are constructed. Chemical Engineering Science, 4, 130–140.

    ADS  CAS  Google Scholar 

  39. Wadsworth, P., & Khodjakov, A. (2004). E pluribus unum: towards a universal mechanism for spindle assembly. trends cell. Trends in Cell Biology, 14, 413–419.

    CAS  PubMed  Google Scholar 

  40. Minoura, I., & Muto, E. (2006). Dielectric measurement of individual microtubules using the electroorientation method. Biophysical Journal, 90, 3739–3748.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perutz, M. F. (1970). Stereochemistry of cooperative effects in haemoglobin: Haem-haem interaction and the problem of allostery. Nature, 228, 726.

    ADS  CAS  PubMed  Google Scholar 

  42. Toda, M. (1967). Vibration of a chain with nonlinear interaction. Journal of the Physical Society of Japan, 22, 431–436.

    ADS  CAS  Google Scholar 

  43. Hirota, R., & Suzuki, K. (1970). Studieson lattice solitons by using electrical networks. Journal of the Physical Society of Japan, 28, 1366–1367.

    ADS  Google Scholar 

  44. Onishi, Y., Eshitai, Y., Ji, R., et al. (2015). Medicinal facilities to b16f10 melanoma cells for distant metastasis control with a supramolecular complex by deae-dextran-mma copolymer/paclitaxe. Drug Deliv and transl Res, 5, 38–50.

    Google Scholar 

  45. Onishi, Y., Eshitai, Y., Ji, R., et al. (2018). Supermolecular drug challenge to overcome drug resistance in cancer cells. Drug Discovery Today, 23, 1556–1563.

    CAS  PubMed  Google Scholar 

  46. Tonga, G. Y., Jeong, Y., Duncan, B., et al. (2015). Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nature Chemistry, 7, 597–603.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to the late Prof. Sigeo Yomosa of Nagoya University for his discussion of Soliton.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YO performed writing—original draft and conceptualization. R-C J, and TK, and MO, and MM, and JY, and NK, and YE writing—review and editing; conceptualization.

Corresponding author

Correspondence to Yasuhiko Onishi.

Ethics declarations

Research Involving Humans and Animals Statement

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishi, Y., Ji, RC., Kobayashi, T. et al. Soliton-Based Signaling Communication and Supermolecular Nano-complex by DDMC/PTX in Tumor Microenvironment. BioNanoSci. 14, 198–210 (2024). https://doi.org/10.1007/s12668-023-01264-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01264-1

Keywords

Navigation