Skip to main content
Log in

The Enhancement of the Antibacterial Activity for Silver Nanoparticles Synthesized from the Extract of Citrus grandis Peel Under LED Irradiation

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this work, a novel synthesis for silver nanoparticles (AgNPs) was investigated by using a pectic polysaccharide as a reducing and stabilizing agent in the extract of Citrus grandis (C. grandis) peel under the exposure of light-emitting diode (LED) irradiation. Extraction conditions of C. grandis peel such as the concentration of powdered peel, extraction temperature, and extraction time on AgNP formation have been determined. Pectin in the extract of C. grandis peels not only reduced silver ions but also stabilized nanoparticles, resulting in the formation of AgNPs with a high-pure phase at an absorption maximum of 420 nm. The synthesis process of AgNPs in the absence and presence of different LED lights was also compared under the same synthesis conditions. The presence of LED irradiations was a potential factor to enhance the efficient formation of AgNPs in terms of small particles and high antibacterial efficiency. Blue LED irradiation was found to be the best condition for the synthesis of AgNPs with an average diameter of 14.1 nm. Among tested gram-positive/negative bacteria, the synthesized AgNPs-L exhibited the most effective activity toward Pseudomonas aeruginosa (IC50 = 2.2 pM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang, Z., Shen, W., Xue, J., Liu, Y., Liu, Y., Yan, P., Liu, J., & Tang, J. (2018). Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Research Letters, 13(1), 54. https://doi.org/10.1186/s11671-018-2450-4

    Article  Google Scholar 

  2. Majeed, S., Danish, M., Mohamad Ibrahim, M. N., BintiSekeri, S. H., Ul Islam, S. A., & Tahir Ansari, M. (2020). In vitro cytotoxic effect of Aspergillus clavatus generated silver nanoparticles on RAW 264.7 cells. Karbala International Journal of Modern Science, 6(4), 344–352. https://doi.org/10.33640/2405-609x.1807

    Article  Google Scholar 

  3. Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534. https://doi.org/10.3390/ijms17091534

    Article  Google Scholar 

  4. Firdhouse, M. J., & Lalitha, P. (2015). Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology, 2015, 1–18. https://doi.org/10.1155/2015/829526

    Article  Google Scholar 

  5. Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology, 45(7), 1272–1291. https://doi.org/10.1080/21691401.2016.1241792

    Article  Google Scholar 

  6. Pallavicini, P., Arciola, C. R., Bertoglio, F., Curtosi, S., Dacarro, G., D’Agostino, A., Ferrari, F., Merli, D., Milanese, C., Rossi, S., Taglietti, A., Tenci, M., & Visai, L. (2017). Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. Journal of Colloid and Interface Science, 498, 271–281. https://doi.org/10.1016/j.jcis.2017.03.062

    Article  Google Scholar 

  7. Devendiran, R. M., Chinnaiyan, S. K., Yadav, N. K., Moorthy, G. K., Ramanathan, G., Singaravelu, S., Sivagnanam, U. T., & Perumal, P. T. (2016). Green synthesis of folic acid-conjugated gold nanoparticles with pectin as reducing/stabilizing agent for cancer theranostics. RSC Advances, 6(35), 29757–29768. https://doi.org/10.1039/C6RA01698G

    Article  Google Scholar 

  8. Vanitha Kumari, G., Asha, S., Mathavan, T., & Jothi Rajan, M. (2016). Synthesis and characterization of pectin functionalized bimetallic silver/gold nanoparticles for photodynamic applications. Journal of Physical Chemistry and Biophysics, 6(3), 0398. https://doi.org/10.4172/2161-0398.1000221

    Article  Google Scholar 

  9. Ivanova, N. V., Trofimova, N. N., Es’kova, L. A., & Babkin, V. A. (2012). The study of the reaction of pectin-Ag(0) nanocomposites formation. International Journal of Carbohydrate Chemistry, 2012, 459410. https://doi.org/10.1155/2012/459410

    Article  Google Scholar 

  10. Guo, X., Zhao, W., Liao, X., Hu, X., Wu, J., & Wang, X. (2017). Extraction of pectin from the peels of pomelo by high-speed shearing homogenization and its characteristics. LWT-Food Science and Technology, 79, 640–646. https://doi.org/10.1016/j.lwt.2016.12.001

    Article  Google Scholar 

  11. Liu, Z., Zu, Y., & Yang, L. (2017). A process to preserve valuable compounds and acquire essential oils from pomelo flavedo using a microwave irradiation treatment. Food Chemistry, 224, 172–180. https://doi.org/10.1016/j.foodchem.2016.12.027

    Article  Google Scholar 

  12. Wandee, Y., Uttapap, D., & Mischnick, P. (2019). Yield and structural composition of pomelo peel pectins extracted under acidic and alkaline conditions. Food Hydrocolloids, 87, 237–244. https://doi.org/10.1016/j.foodhyd.2018.08.017

    Article  Google Scholar 

  13. Chavan, P., Singh, A. K., & Kaur, G. (2018). Recent progress in the utilization of industrial waste and by-products of citrus fruits: A review. Journal of Food Process Engineering, 41(8), 12895. https://doi.org/10.1111/jfpe.12895

    Article  Google Scholar 

  14. Tocmo, R., Pena Fronteras, J., Calumba, K. F., Mendoza, M., & Johnson, J. J. (2020). Valorization of pomelo (Citrus grandis Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1969–2012. https://doi.org/10.1111/1541-4337.12561

    Article  Google Scholar 

  15. Nguyen, V. T. (2020). Sunlight-driven synthesis of silver nanoparticles using Pomelo peel extract and antibacterial testing. Journal of Chemistry, 2020, 6407081. https://doi.org/10.1155/2020/6407081

    Article  Google Scholar 

  16. Ali, K. A., Yao, R., Wu, W., Masum, M. M. I., Luo, J., Wang, Y., Zhang, Y., An, Q., Sun, G., & Li, B. (2020). Biosynthesis of silver nanoparticle from pomelo (Citrus maxima) and their antibacterial activity against acidovorax oryzae RS-2. Materials Research Express, 7(1), 015097. https://doi.org/10.1088/2053-1591/ab6c5e

    Article  Google Scholar 

  17. Barbhuiya, R. I., Singha, P., Asaithambi, N., & Singh, S. K. (2022). Ultrasound-assisted rapid biological synthesis and characterization of silver nanoparticles using pomelo peel waste. Food Chemistry, 385, 132602. https://doi.org/10.1016/j.foodchem.2022.132602

    Article  Google Scholar 

  18. Ayinde, W. B., Gitari, W. M., & Samie, A. (2019). Optimization of microwave-assisted synthesis of silver nanoparticle by Citrus paradisi peel and its application against pathogenic water strain. Green Chemistry Letters and Reviews, 12(3), 225–234. https://doi.org/10.1080/17518253.2019.1627427

    Article  Google Scholar 

  19. Jalani, N. S., Michell, W., Lin, W. E., Zati-Hanani, S., Hasim, U., & Abdullah, R. (2018). The influence of different reaction parameters on plant-mediated synthesis of silver nanoparticles from Citrus grandis. Advances in Natural Applied Sciences, 12(4), 1–5. https://doi.org/10.22587/anas.2018.12.4.1

    Article  Google Scholar 

  20. Balachandran, Y. L., Girija, S., Selvakumar, R., Tongpim, S., Gutleb, A. C., & Suriyanarayanan, S. (2013). Differently evironment stable bio-silver nanoparticles: Study on their optical enhancing and antibacterial properties. PLoS ONE, 8(10), 77043. https://doi.org/10.1371/journal.pone.0077043

    Article  Google Scholar 

  21. Ghorab, M., El Batal, A., Hanor, A., & Mosalam, F. (2016). Incorporation of silver nanoparticles with natural polymers using biotechnological and gamma irradiation processes. Biotechnology Journal International, 16(1), 1–25. https://doi.org/10.9734/BBJ/2016/25642

    Article  Google Scholar 

  22. Zhang, W., Zhao, X. J., Jiang, Y., & Zhou, Z. (2017). Citrus pectin derived silver nanoparticles and their antibacterial activity. Inorganic and Nano-Metal Chemistry, 47(1), 15–20. https://doi.org/10.1080/15533174.2015.1137073

    Article  Google Scholar 

  23. Li, K., Cui, S., Hu, J., Zhou, Y., & Liu, Y. (2018). Crosslinked pectin nanofibers with well-dispersed Ag nanoparticles: Preparation and characterization. Carbohydrate Polymers, 199, 68–74. https://doi.org/10.1016/j.carbpol.2018.07.013

    Article  Google Scholar 

  24. Khamhaengpol, A., & Siri, S. (2016). Fluorescent light mediated a green synthesis of silver nanoparticles using the protein extract of weaver ant larvae. Journal of Photochemistry and Photobiology B: Biology, 163, 337–344. https://doi.org/10.1016/j.jphotobiol.2016.09.003

    Article  Google Scholar 

  25. Lee, J. H., Lim, J. M., Velmurugan, P., Park, Y. J., Park, Y. J., Bang, K. S., & Oh, B. T. (2016). Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity. Journal of Photochemistry and Photobiology B: Biology, 162, 93–99. https://doi.org/10.1016/j.jphotobiol.2016.06.029

    Article  Google Scholar 

  26. Verma, S., Rao, B. T., Srivastava, A. P., Srivastava, D., Kaul, R., & Singh, B. (2017). A facile synthesis of broad plasmon wavelength tunable silver nanoparticles in citrate aqueous solutions by laser ablation and light irradiation. Colloids and Surfing Physicochemical and Engineering Aspects, 527, 23–33. https://doi.org/10.1016/j.colsurfa.2017.05.003

    Article  Google Scholar 

  27. Zheng, X., Zhao, X., Guo, D., Tang, B., Xu, S., Zhao, B., Weiqing, X., & Lombardi, J. R. (2009). Photochemical formation of silver nanodecahedra: Structural selection by the excitation wavelength. Langmuir, 25(6), 3802–3807. https://doi.org/10.1021/la803814j

    Article  Google Scholar 

  28. Stamplecoskie, K. G., & Scaiano, J. C. (2010). Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society, 132(6), 1825–1827. https://doi.org/10.1021/ja910010b

    Article  Google Scholar 

  29. Ider, M., Abderrafi, K., Eddahbi, A., Ouaskit, S., & Kassiba, A. (2016). Silver metallic nanoparticles with surface plasmon resonance: Synthesis and characterizations. Journal of Cluster Science, 28(3), 1051–1069. https://doi.org/10.1007/s10876-016-1080-1

    Article  Google Scholar 

  30. López-Miranda, J. L., Vázquez, M., Fletes, N., Esparza, R., & Rosas, G. (2016). Biosynthesis of silver nanoparticles using a Tamarix gallica leaf extract and their antibacterial activity. Materials Letters, 176, 285–289. https://doi.org/10.1016/j.matlet.2016.04.126

    Article  Google Scholar 

  31. Nur, S. J., Michell, W., Wong, E. L., Sharifah, Z. H., Uda, H., & Rozaini, A. (2018). Biosynthesis of silver nanoparticles using Citrus grandis peel extract. Malaysian J Anal Sci, 22(4), 676–683. https://doi.org/10.17576/mjas-2018-2204-14

    Article  Google Scholar 

  32. Fakayode, O. A., & Abobi, K. E. (2018). Optimization of oil and pectin extraction from orange (Citrus sinensis) peels: A response surface approach. Journal of Analytical Science and Technology, 9(1), 20. https://doi.org/10.1186/s40543-018-0151-3

    Article  Google Scholar 

  33. Rubaiyi MZ, Zularisam AW, Sakinah A (2016) Effect of process parameters on pectin extraction from dragon fruit (Hylocereus polyrhizus) peels via chemical and physical treatment. Aust J Basic Appl Sci 10(17):69–74. http://ajbasweb.com/old/ajbas/2016/Special%20ICCEIB/69-74.pdf

  34. Trung, N. D., Dam, N. P., Yen, H. H., Tuan, N. T., & Hong, N. T. (2021). Rapid synthesis of silver nanoparticles using the extract of Psidium guajava leaf based on light-emitting diodes irradiation. Chemical Papers, 75, 5623–5631. https://doi.org/10.1007/s11696-021-01747-z

    Article  Google Scholar 

  35. da Silva, R. T. P., Petri, M. V., Valencia, E. Y., Camargo, P. H. C., de Torresi, S. I. C., & Spira, B. (2020). Visible light plasmon excitation of silver nanoparticles against antibiotic-resistant Pseudomonas aeruginosa. Photodiagnosis and Photodynamic Therapy, 31, 101908. https://doi.org/10.1016/j.pdpdt.2020.101908

    Article  Google Scholar 

  36. Agnihotri, S., Soumyo, M., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974–3983. https://doi.org/10.1039/c3ra44507k

    Article  Google Scholar 

  37. Priyadarshini, K. A., Murugan, K., Panneerselvam, C., Ponarulselvam, S., Hwang, J. S., & Nicoletti, M. (2012). Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitology Research, 111(3), 997–1006. https://doi.org/10.1007/s00436-012-2924-8

    Article  Google Scholar 

  38. Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the ‘Debye-Scherrer equation.’ Nature Nanotechnology, 6(9), 534. https://doi.org/10.1038/nnano.2011.145

    Article  Google Scholar 

  39. Košťálová, Z., Hromádková, Z., & Ebringerová, A. (2013). Structural diversity of pectins isolated from the Styrian oil-pumpkin (Cucurbita pepo var. styriaca) fruit. Carbohydrate Polymers, 93(1), 163–171. https://doi.org/10.1016/j.carbpol.2012.05.017

    Article  Google Scholar 

  40. Guibaud, G., Tixier, N., Bouju, A., & Baudu, M. (2003). Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere, 52(10), 1701–1710. https://doi.org/10.1016/s0045-6535(03)00355-2

    Article  Google Scholar 

  41. Hileuskaya, K., Ladutska, A., Kulikouskaya, V., Kraskouski, A., Novik, G., Kozerozhets, I., Kozlovskiy, A., & Agabekov, V. (2020). ‘Green’ approach for obtaining stable pectin-capped silver nanoparticles: Physico-chemical characterization and antibacterial activity. Colloids and Surfaces Physicochemical and Engineering Aspects, 585, 124141. https://doi.org/10.1016/j.colsurfa.2019.124141

    Article  Google Scholar 

  42. Some, S., Bulut, O., Biswas, K., Kumar, A., Roy, A., Sen, I. K., Mandal, A., Franco, O. L., İnce, İA., Neog, K., Das, S., Pradhan, S., Dutta, S., Bhattacharjya, D., Saha, S., Das Mohapatra, P. K., Bhuimali, A., Unni, B. G., Kati, A., … Ocsoy, I. (2019). Effect of feed supplementation with biosynthesized silver nanoparticles using leaf extract of Morus indica L. V1 on Bombyx mori L. (Lepidoptera: Bombycidae). Scientific Reports, 9(1), 14839. https://doi.org/10.1038/s41598-019-50906-6

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from Can Tho University, Vietnam (No. TSV2021-51).

Author information

Authors and Affiliations

Authors

Contributions

The authorship contribution statement is given as follows: Trung Dien Nguyen: conceptualization, methodology, investigation, resources, writing — original draft. Hong Thi Nguyen: conceptualization, methodology, writing — original draft. Dam Phuc Nguyen: writing — review and editing. Huyen Bich Thi Vo: writing — review and editing.

Corresponding author

Correspondence to Hong Thi Nguyen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

This article does not contain any studies involving human participants and animals performed by any of the authors.

Informed Consent

Our participation in this study is voluntary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.D., Nguyen, H.T., Nguyen, D.P. et al. The Enhancement of the Antibacterial Activity for Silver Nanoparticles Synthesized from the Extract of Citrus grandis Peel Under LED Irradiation. BioNanoSci. 12, 1279–1288 (2022). https://doi.org/10.1007/s12668-022-01041-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-01041-6

Keywords

Navigation