Skip to main content

Advertisement

Log in

Prevention of Protein Glycation by Nanoparticles: Potential Applications in T2DM and Associated Neurodegenerative Diseases

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Glycation is the non-enzymatic covalent attachment of a sugar (carbohydrate) to a protein or lipid molecule. This process leads to the formation of advanced glycation end products (AGEs) which bind to the receptor for AGEs (RAGE) and facilitate further disease progression. Understanding the mechanisms for AGE formation in the progression of type 2 diabetes mellitus (T2DM) and neurodegenerative diseases can help target pathways that either facilitate AGE formation or the pathways that upregulate RAGE expression and activation. Several researchers have embarked on targeting these pathways either directly or indirectly. Nanoparticle (NP)–based approaches prove to be advantageous due to their modifiable surface properties, high biocompatibility and bioavailability in the body, minimal side effects and efficient blood–brain barrier permeability. Various drugs or therapeutic components can be encapsulated within them for targeted drug delivery. NPs explored in this study significantly brought down the overall reactive oxygen species (ROS) production, inhibited glycation and further fibrillation of particular proteins and increased cell viability. In this review, we discuss NPs that have shown a significant antiglycation property, ROS scavenging activity and blood–brain barrier permeability along with an ability to inhibit secondary structure changes and aggregation of proteins. However, clinical utility of these NPs still remains unclear as there is no clinical evidence to show that targeting of glycation with NP-based drug delivery systems could be a therapy for T2DM and reduce the risk of associated neurodegenerative diseases. Extensive research related to NPs with antiglycation properties may be a very successful approach for the treatment of T2DM and associated neurodegenerative disorders like Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

adapted from reference [91]. As the Aβ protein undergo glycation, the products might misfold/aggregate and funnel towards amyloid fibrils leading to signal-induced oxidative stress, inflammation, cytokine storm, neuronal apoptosis and eventually neurodegeneration induced by AGE-RAGE [92]

Fig. 4

Similar content being viewed by others

References

  1. Gao, Y., Bielohuby, M., Fleming, T., Grabner, G. F., Foppen, E., Bernhard, W., Guzmán-Ruiz, M., Layritz, C., Legutko, B., Zinser, E., García-Cáceres, C., Buijs, R. M., Woods, S. C., Kalsbeek, A., Seeley, R. J., Nawroth, P. P., Bidlingmaier, M., Tschöp, M. H., & Yi, C. X. (2017). Dietary sugars, not lipids, drive hypothalamic inflammation. MolMetab, 6(8), 897–908.

    Google Scholar 

  2. Henning, C., & Glomb, M. (2016). Pathways of the Maillard reaction under physiological conditions. Glycoconjugate Journal, 33(4), 499–512.

    Article  Google Scholar 

  3. Sergi, D., Boulestin, H., Campbell, F., & Williams, L. (2020). The role of dietary advanced glycation End products in metabolic dysfunction. MolNutr Food Res, 65(1), 1900934.

    Google Scholar 

  4. Sessa, L., Gatti, E., Zeni, F., Antonelli, A., Catucci, A., Koch, M., Pompilio, G., Fritz, G., Raucci, A., & Bianchi, M. E. (2014). The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs). PLoS One, 9(1), e86903.

    Article  Google Scholar 

  5. Choi, B., Cho, W., Kim, J., Lee, H. J., Chung, C. H., Jeon, W. K., & Han, J. S. (2014). Increased expression of the receptor for advanced glycation end products in neurons and astrocytes in a triple transgenic mouse model of Alzheimer’s disease. ExpMol Med, 46(2), e75.

    Google Scholar 

  6. Chaudhuri, J., Bains, Y., Guha, S., Kahn, A., Hall, D., Bose, N., Gugliucci, A., & Kapahi, P. (2018). The role of advanced glycation end products in aging and metabolic diseases: Bridging association and causality. Cell Metab, 28(3), 337–352.

    Article  Google Scholar 

  7. Wautier, M., Guillausseau, P., & Wautier, J. (2017). Activation of the receptor for advanced glycation end products and consequences on health. Diabetes Metab. Syndr Clin. Res. Rev, 11(4), 305–309.

    Article  Google Scholar 

  8. Nowotny, K., Jung, T., Höhn, A., Weber, D., & Grune, T. (2015). Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 5(1), 194–222.

    Article  Google Scholar 

  9. Guimarães, E., Empsen, C., Geerts, A., & van Grunsven, L. (2010). Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. Journal of Hepatology, 52(3), 389–397.

    Article  Google Scholar 

  10. Senatus, L., & Schmidt, A. (2017). The AGE-RAGE axis: Implications for age-associated arterial diseases. Front Genet, 8, 187.

    Article  Google Scholar 

  11. Xue, J., Ray, R., Singer, D., Böhme, D., Burz, D. S., Rai, V., Hoffmann, R., & Shekhtman, A. (2014). The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry, 53(20), 3327–3335.

    Article  Google Scholar 

  12. Bongarzone, S., Savickas, V., Luzi, F., & Gee, A. (2017). Targeting the receptor for advanced glycation endproducts (RAGE): A medicinal chemistry perspective. Journal of Medicinal Chemistry, 60(17), 7213–7232.

    Article  Google Scholar 

  13. Ogurtsova, K., Fernandes, J. D. R., Huang, Y., et al. (2017). IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Prac, 128, 40–50.

    Article  Google Scholar 

  14. Ono, Y., Aoki, S., Ohnishi, K., Yasuda, T., Kawano, K., & Tsukada, Y. (1998). Increased serum levels of advanced glycation end-products and diabetic complications. Diabetes Res Clin Prac, 41(2), 131–137.

    Article  Google Scholar 

  15. Brownlee, M. (2005). The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 54(6), 1615–1625.

    Article  Google Scholar 

  16. Tanji, N., Markowitz, G. S., Fu, C., Kislinger, T., Taguchi, A., Pischetsrieder, M., Stern, D., Schmidt, A. M., & D’agati, V. D. (2000). Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. Journal of the American Society of Nephrology, 11(9), 1656–1666.

    Article  Google Scholar 

  17. Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E., & Border, W. A. (1993). Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A, 90(5), 1814–1818.

    Article  Google Scholar 

  18. Yamagishi, S.-I., & Matsui, T. (2010). Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxidative Medicine and Cellular Longevity, 3(2), 101–108.

    Article  Google Scholar 

  19. Aiello, L. P., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., Ferris, F. L., & Klein, R. (1998). Diabetic retinopathy. Diabetes Care, 21(1), 143–156.

    Article  Google Scholar 

  20. Pokupec, R., Kalauz, M., Turk, N., & Turk, Z. (2003). Advanced glycation endproducts in human diabetic and non-diabetic cataractous lenses. Graefes Arch. Clin. Exp. Ophthalmol, 241(5), 378–384.

    Article  Google Scholar 

  21. Haslbeck, M., Walke, S., & Stromer, T. (1998). Hsp26: A temperature-regulated chaperone. EMBO Journal, 18(23), 6744–6751.

    Article  Google Scholar 

  22. Carmeliet, P. (2000). VEGF gene therapy: Stimulating angiogenesis or angioma-genesis? Nature Medicine, 6(10), 1102–1103.

    Article  Google Scholar 

  23. Joussen, A. M., Murata, T., Tsujikawa, A., Kirchhof, B., Bursell, S. E., & Adamis, A. P. (2001). Leukocyte-mediated endothelial cell injury and death in the diabetic retina. American Journal of Pathology, 158(1), 147–152.

    Article  Google Scholar 

  24. Miyamoto, K., Khosrof, S., Bursell, S. E., Rohan, R., Murata, T., Clermont, A. C., Aiello, L. P., Ogura, Y., & Adamis, A. P. (1999). Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl AcadSci U S A, 96(19), 10836–10841.

    Article  Google Scholar 

  25. de la Monte, S. M., & Kril, J. J. (2014). Human alcohol-related neuropathology. Acta Neuropathologica, 127(1), 71–90.

    Article  Google Scholar 

  26. Srikanth, V., Maczurek, A., Phan, T., Steele, M., Westcott, B., Juskiw, D., & Münch, G. (2011). Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging, 32(5), 763–777.

    Article  Google Scholar 

  27. Gasparotto, J., Ribeiro, C. T., da Rosa-Silva, H. T., et al. (2019). Systemic inflammation changes the site of RAGE expression from endothelial cells to neurons in different brain areas. MolNeurobiol, 56(5), 3079–3089.

    Google Scholar 

  28. Gasparotto, J., Girardi, C. S., Somensi, N., Ribeiro, C. T., Moreira, J. C. F., Michels, M., Sonai, B., Rocha, M., Steckert, A. V., Barichello, T., Quevedo, J., Dal-Pizzol, F., & Gelain, D. P. (2018). Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, tau phosphorylation, and cognitive impairment. Journal of Biological Chemistry, 293(1), 226–244.

    Article  Google Scholar 

  29. Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645), 839–840.

    Article  Google Scholar 

  30. Guerrero, E., Vasudevaraju, P., Hegde, M. L., Britton, G. B., & Rao, K. S. (2013). Recent advances in α-synuclein functions, advanced glycation, and toxicity: Implications for Parkinson’s disease. MolNeurobiol, 47(2), 525–536.

    Google Scholar 

  31. Bayarsaikhan, E., Bayarsaikhan, D., Lee, J., Bayarsaikhan, E., Bayarsaikhan, D., Lee, J., Son, M., Moon, J., Park, H.-J., Arivazhagan, R., Kim, S., Song, B.-J., Jo, S.-M., & Oh, S. (2016). Microglial AGE-albumin is critical for neuronal death in Parkinson’s disease: A possible implication for theranostics. International Journal of Nanomedicine, 10, 281–292.

    Article  Google Scholar 

  32. Li, X. H., Lv, B. L., Xie, J. Z., Liu, J., Zhou, X. W., & Wang, J. Z. (2012). AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiology of Aging, 33(7), 1400–1410.

    Article  Google Scholar 

  33. Verdile, G., Fuller, S. J., & Martins, R. N. (2015). The role of type 2 diabetes in neurodegeneration. Neurobiology of Diseases, 84, 22–38.

    Article  Google Scholar 

  34. Anwar, S., Khan, S., Almatroudi, A., Khan, A. A., Alsahli, M. A., Almatroodi, S. A., & Rahmani, A. H. (2021). A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds. MolBiol Rep, 48(1), 787–805.

    Google Scholar 

  35. Kim, T., & Spiegel, D. A. (2013). The unique reactivity of N-phenacyl-derived thiazolium salts toward α-dicarbonyl compounds. Rejuvenation Research, 16(1), 43–50.

    Article  Google Scholar 

  36. Kass, D. A., Shapiro, E. P., Kawaguchi, M., Capriotti, A. R., Scuteri, A., deGroof, R. C., & Lakatta, E. G. (2001). Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation, 104(13), 1464–1470.

    Article  Google Scholar 

  37. Thornalley, P. J. (2003). Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch BiochemBiophys, 419(1), 31–40.

    Article  Google Scholar 

  38. Romero, R., Espinoza, J., Hassan, S., Gotsch, F., Kusanovic, J. P., Avila, C., Erez, O., Edwin, S., & Schmidt, A. M. (2008). Soluble receptor for advanced glycation end products (sRAGE) and endogenous secretory RAGE (esRAGE) in amniotic fluid: Modulation by infection and inflammation. Journal of Perinatal Medicine, 36(5), 388–398.

    Article  Google Scholar 

  39. Jud, P., & Sourij, H. (2019). Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Res ClinPract, 148, 54–63.

    Article  Google Scholar 

  40. De Jong, W. H., & Borm, P. J. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 3(2), 133–149.

    Article  Google Scholar 

  41. Guo, R., Song, Y., Wang, G., & Murray, R. W. (2005). Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? Journal of the American Chemical Society, 127(8), 2752–2757.

    Article  Google Scholar 

  42. Jeon, K. I., Byun, M. S., & Jue, D. M. (2003). Gold compound auranofin inhibits IkappaB kinase (IKK) by modifying Cys-179 of IKKbeta subunit. ExpMol Med, 35(2), 61–66.

    Google Scholar 

  43. Kim, N. H., Lee, M. Y., Park, S. J., Choi, J. S., Oh, M. K., & Kim, I. S. (2007). Auranofin blocks interleukin-6 signalling by inhibiting phosphorylation of JAK1 and STAT3. Immunology, 122(4), 607–614.

    Article  Google Scholar 

  44. Norton, S. (2008). A brief history of potable gold. MolInterv, 8(3), 120–123.

    Google Scholar 

  45. Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (1979). 2018 Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci, 19, 7.

    Google Scholar 

  46. Barathmanikanth, S., Kalishwaralal, K., Sriram, M., Pandian, S. B., Youn-seop, H., Eom, S. H., & Gurunathan, S. (2010). Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnology, 8, 16.

    Article  Google Scholar 

  47. Sengani, M., & Rajeswari, D. (2017). Gold nanosupplement in selective inhibition of methylglyoxal and key enzymes linked to diabetes. IET Nanobiotechnology, 11(7), 861–865.

    Article  Google Scholar 

  48. Ahmed, F., & Husain, Q. (2019). Suppression in advanced glycation adducts of human serum albumin by bio-enzymatically synthesized gold and silver nanoformulations: A potential tool to counteract hyperglycemic condition. Biochimie, 162, 66–76.

    Article  Google Scholar 

  49. Seneviratne, C., Narayanan, R., Liu, W., & Dain, J. A. (2012). The in vitro inhibition effect of 2 nm gold nanoparticles on non-enzymatic glycation of human serum albumin. BiochemBiophys Res Commun, 422(3), 447–454.

    Article  Google Scholar 

  50. Wang, Y., Wang, H., Khan, M. S., Husain, F. M., Ahmad, S., & Bian, L. (2021). Bioconjugation of gold nanoparticles with aminoguanidine as a potential inhibitor of non-enzymatic glycation reaction. J BiomolStructDyn, 39(6), 2014–2020.

    Google Scholar 

  51. Singha, S., Bhattacharya, J., Datta, H., & Dasgupta, A. K. (2009). Anti-glycation activity of gold nanoparticles. Nanomedicine, 5(1), 21–29.

    Article  Google Scholar 

  52. Liu, W., Cohenford, M. A., Frost, L., Seneviratne, C., & Dain, J. A. (2014). Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin. International Journal of Nanomedicine, 9, 5461–5469.

    Article  Google Scholar 

  53. Azharuddin, M., Dasgupta, A., & Datta, H. (2015). Gold nanoparticle conjugated with curcumin and curcumin nanoparticles as a possible nano-therapeutic drug in cataract. Curr Indian Eye Res, 2(2), 71–73.

    Google Scholar 

  54. Ahmad, S., Khan, M. S., Akhter, F., Khan, M. S., Khan, A., Ashraf, J. M., Pandey, R. P., & Shahab, U. (2014). Glycoxidation of biological macromolecules: A critical approach to halt the menace of glycation. Glycobiology, 24(11), 979–990.

    Article  Google Scholar 

  55. Kim, J. H., Hong, C. O., Koo, Y. C., Choi, H. D., & Lee, K. W. (2012). Anti-glycation effect of gold nanoparticles on collagen. Biological &/and Pharmaceutical Bulletin, 35(2), 260–264.

    Article  Google Scholar 

  56. Sheikpranbabu, S., Kalishwaralal, K., Lee, K. J., Vaidyanathan, R., Eom, S. H., & Gurunathan, S. (2010). The inhibition of advanced glycation end-products-induced retinal vascular permeability by silver nanoparticles. Biomaterials, 31(8), 2260–2271.

    Article  Google Scholar 

  57. Gurunathan, S., Park, J. H., Han, J. W., & Kim, J. H. (2015). Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. International Journal of Nanomedicine, 10, 4203–4222.

    Article  Google Scholar 

  58. Li, W. R., Xie, X. B., Shi, Q. S., Zeng, H. Y., Ou-Yang, Y. S., & Chen, Y. B. (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. ApplMicrobiolBiotechnol, 85(4), 1115–1122.

    Google Scholar 

  59. Chernousova, S., & Epple, M. (2013). Silver as antibacterial agent: Ion, nanoparticle, and metal. AngewChemInt Ed Engl, 52(6), 1636–1653.

    Google Scholar 

  60. Ashraf, J. M., Ansari, M. A., Khan, H. M., Alzohairy, M. A., & Choi, I. (2016). Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Science and Reports, 6, 20414.

    Article  Google Scholar 

  61. Ashraf, J. M., Ansari, M. A., Choi, I., Khan, H. M., & Alzohairy, M. A. (2014). Antiglycating potential of gum arabic capped-silver nanoparticles. ApplBiochemBiotechnol, 174(1), 398–410.

    Google Scholar 

  62. Ashe, S., Nayak, D., Kumari, M., & Nayak, B. (2016). Ameliorating effects of green synthesized silver nanoparticles on glycated end product induced reactive oxygen species production and cellular toxicity in osteogenic Saos-2 cells. ACS Applied Materials & Interfaces, 8(44), 30005–30016.

    Article  Google Scholar 

  63. Garcia Campoy, A. H., Perez Gutierrez, R. M., Manriquez-Alvirde, G., & Muñiz, R. A. (2018). Protection of silver nanoparticles using Eysenhardtia polystachya in peroxide-induced pancreatic β-Cell damage and their antidiabetic properties in zebrafish. International Journal of Nanomedicine, 13, 2601–2612.

    Article  Google Scholar 

  64. Alkhalaf, M. I., Hussein, R. H., & Hamza, A. (2020). Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci, 27(9), 2410–2419.

    Article  Google Scholar 

  65. King, J. C., Shames, D. M., & Woodhouse, L. R. (2000). Zinc homeostasis in humans. Journal of Nutrition, 130(5S Suppl), 1360S-S1366.

    Article  Google Scholar 

  66. Maret, W. (2017). Zinc in pancreatic islet biology, insulin sensitivity, and diabetes. PrevNutr Food Sci, 22(1), 1–8.

    Google Scholar 

  67. Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. BioinorgChem Appl, 2018, 1–18.

    Article  Google Scholar 

  68. Martínez-Carmona, M., Gun’ko, Y., & Vallet-Regí, M. (2018). ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials (Basel), 8(4), 268.

    Article  Google Scholar 

  69. Kumar, D., Bhatkalkar, S. G., Sachar, S., & Ali, A. (2020). Studies on the antiglycating potential of zinc oxide nanoparticle and its interaction with BSA. J BiomolStructDyn, 39(18), 6918–6925.

    Google Scholar 

  70. Patel, H. V., Macwan, D., Khambholja, D. B., & Bariya, H. S. (2020). In-vitro antiglycation activity of zinc oxide nanoparticles synthesized from the bioactive fraction of Bambusa arundinacea leaf extract. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 11(5), 48–59.

    Google Scholar 

  71. Anandan, S., Mahadevamurthy, M., Ansari, M. A., Alzohairy, M. A., Alomary, M. N., FarhaSiraj, S., HaluguddeNagaraja, S., Chikkamadaiah, M., ThimappaRamachandrappa, L., NaguvanahalliKrishnappa, H. K., Ledesma, A. E., Nagaraj, A. K., & Urooj, A. (2019). Biosynthesized ZnO-NPs from Morus indica attenuates methylglyoxal-induced protein glycation and RBC damage: In-vitro, in-vivo and molecular docking study. Biomolecules, 9(12), 882.

    Article  Google Scholar 

  72. Afify, M., Samy, N., Hafez, N., Alazzouni, A., Mahdy, E., Sayed, El., Mezayen, H., & Kelany, M. (2019). Evaluation of zinc-oxide nanoparticles effect on treatment of diabetes in streptozotocin-induced diabetic rats. Egypt J Chem, 62(10), 1771–1783.

    Google Scholar 

  73. Ashraf, J. M., Ansari, M. A., Fatma, S., Abdullah, S. M., Iqbal, J., Madkhali, A., Hamali, A. H., Ahmad, S., Jerah, A., Echeverria, V., Barreto, G. E., & Ashraf, G. M. (2018). Inhibiting effect of zinc oxide nanoparticles on advanced glycation products and oxidative modifications: A potential tool to counteract oxidative stress in neurodegenerative diseases. MolNeurobiol, 55(9), 7438–7452.

    Google Scholar 

  74. Moglianetti, M., De Luca, E., Pedone, D., Marotta, R., Catelani, T., Sartori, B., Amenitsch, H., Retta, S. F., & Pompa, P. P. (2016). Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. Nanoscale, 8(6), 3739–3752.

    Article  Google Scholar 

  75. Okamoto, H., Horii, K., Fujisawa, A., & Yamamoto, Y. (2012). Oxidative deterioration of platinum nanoparticle and its prevention by palladium. ExpDermatol, 21(Suppl 1), 5–7.

    Google Scholar 

  76. Takabe, W., Yagi, M., Ichihashi, M., & Yonei, Y. (2016). Anti-glycative effect of palladium and platinum nanoparticle solution. Glycative Stress Research, 3(4), 222–228.

    Google Scholar 

  77. Zahera, M., Khan, S. A., Khan, I. A., Sharma, R., & Sinha, N. (2019). Cadmium oxide nanoparticles: An attractive candidate for novel therapeutic approaches. Colloids Surf, A Physicochem Eng Asp, 585, 124.

    Google Scholar 

  78. Singla, R., Abidi, S. M. S., Dar, A. I., & Acharya, A. (2019). Inhibition of glycation-induced aggregation of human serum albumin by organic-inorganic hybrid nanocomposites of iron oxide-functionalized nanocellulose. ACS Omega, 4(12), 14805–14819.

    Article  Google Scholar 

  79. Yang, J., Cai, L., Zhang, S., Zhu, X., Zhou, P., & Lu, Y. (2014). Silica-based cerium (III) chloride nanoparticles prevent the fructose-induced glycation of α-crystallin and H2O2-induced oxidative stress in human lens epithelial cells. Archives of Pharmacal Research, 37(3), 404–411.

    Article  Google Scholar 

  80. Yu, S., Zhang, W., Liu, W., Zhu, W., Guo, R., Wang, Y., Zhang, D., & Wang, J. (2015). The inhibitory effect of selenium nanoparticles on protein glycation in vitro. Nanotechnology, 26(14), 145703.

    Article  Google Scholar 

  81. Mirzaei, Z., Ansari, M., Kordestani, S., Rezaei, M. H., & Mozafari, M. (2019). Preparation and characterization of curcumin-loaded polymeric nanomicelles to interference with amyloidogenesis through glycation method. Biotechnology and Applied Biochemistry, 4, 537–544.

    Article  Google Scholar 

  82. Montenegro, L., Panico, A. M., Santagati, L. M., Siciliano, E. A., Intagliata, S., & Modica, M. N. (2018). Solid lipid nanoparticles loading idebenone ester with pyroglutamic acid: In vitro antioxidant activity and in vivo topical efficacy. Nanomaterials (Basel), 9(1), 43.

    Article  Google Scholar 

  83. Roy, M., & Pal, R. (2017). Chakraborti AS. 84. Pelargonidin-PLGA nanoparticles: Fabrication, characterization, and their effect on streptozotocin induced diabetic rats. Indian J. Exp. Biol, 55, 819–830.

    Google Scholar 

  84. Kazemi, F., Divsalar, A., Saboury, A. A., & Seyedarabi, A. (2019). Propolis nanoparticles prevent structural changes in human hemoglobin during glycation and fructation. Colloids and Surfaces B, 177, 188–195.

    Article  Google Scholar 

  85. Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 62(3), 284–304.

    Article  Google Scholar 

  86. Fayazi, R., Habibi-Rezaei, M., Heiat, M., Javadi-Zarnaghi, F., & Taheri, R. A. (2020). Glycated albumin precipitation using aptamer conjugated magnetic nanoparticles. Science and Reports, 10(1), 10716.

    Article  Google Scholar 

  87. Zhou, Y., Li, L., Li, S., et al. (2019). Autoregenerative redox nanoparticles as an antioxidant and glycation inhibitor for palliation of diabetic cataracts. Nanoscale, 11(27), 13126–13138.

    Article  Google Scholar 

  88. Ray, P., Haideri, N., Haque, I., et al. (2021). The impact of nanoparticles on the immune system: A gray zone of nanomedicine. Journal of Immunological Sciences, 5(1), 19–33.

    Article  Google Scholar 

  89. Kumar A, Agrawal G, Thakur VK. 2021 Advanced nano/micro materials for drug delivery applications. J. Nanomater

  90. Rashid R, Naqash A, Bader GN, Sheikh FA. 2020 Nanotechnology and diabetes management: Recent advances and future perspectives. Application of Nanotechnology in Biomedical Sciences, 99 117

  91. Almeida, Z. L., & Brito, R. M. M. (2020). Structure and aggregation mechanisms in amyloids. Molecules, 25(5), 1195.

    Article  Google Scholar 

  92. Sirangelo, I., & Iannuzzi, C. (2021). Understanding the role of protein glycation in the amyloid aggregation process. International Journal of Molecular Sciences, 22(12), 6609.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Vinayak Ghaisas, Director, School of Bioengineering Sciences & Research, and Dr. Renu Vyas, Head of School, School of Bioengineering Sciences & Research, MIT ADT University, Pune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna Sivaram.

Ethics declarations

Informed Consent

None

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, N., Kelkar, A. & Sivaram, A. Prevention of Protein Glycation by Nanoparticles: Potential Applications in T2DM and Associated Neurodegenerative Diseases. BioNanoSci. 12, 607–619 (2022). https://doi.org/10.1007/s12668-022-00954-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00954-6

Keywords

Navigation