Skip to main content

Biological Activity of Bicyclic Monoterpene Alcohols

Abstract

The present paper aims to study the biological properties of a series of bicyclic monoterpene alcohols. Firstly, we tested the obtained compounds for fungicidal activity against clinical and reference strains of microscopic fungi. Next, we determined the minimum inhibitory concentration of these compounds comparing to other drugs widely used in practical medicine (fluconazole, terbinafine). At this stage, we found that ( −)-myrtenol (47 MIC and 23.5 μg/ml) exhibits the most promising activity against filamentous and yeast fungi, respectively. Then, we have studied the membrane-protective and antioxidant activities of the obtained compounds and found out that ( −)-cis-verbenol and ( −)-myrtenol exhibit the highest activity on the model of erythrocytes oxidative hemolysis. Interestingly, among all the studied bicyclic monoterpene alcohols, the alcohols of the pinane series have been found to be the most promising. The obtained results from the present study suggest that ( −)-myrtenol would be a leading compound for further studies in terms of possible practical application.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Achkar, J. M., & Fries, B. C. (2010). Candida infections of the genitourinary tract. Clinical Microbiology Reviews, 23, 253–273.

    Article  Google Scholar 

  2. Kumari, V., Banerjee, T., Kumar, P., Pandey, S., & Tilak, R. (2013). Emergence of nonalbicans Candida among candidal vulvovaginitis cases and study of their potential virulence factors, from a tertiary care center North India. Indian Journal of Pathology & Microbiology, 56, 144–147. https://doi.org/10.4103/0377-4929.118703

    Article  Google Scholar 

  3. Tobudic, S., Kratzer, C., Lassnigg, A., & Prestrel, E. (2011). Antifungal susceptibility of Candida albicans in biofilms. Mycoses, 55, 199–204.

    Article  Google Scholar 

  4. Pierce, C. G., Uppuluri, P., Tristan, A. R., Wormley, F. L., Jr., Mowat, E., Ramage, G., & Lopez-Ribot, J. L. (2008). A simple and reproducible 96 well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protocols, 3, 1494–1500.

    Article  Google Scholar 

  5. Frolova, L. L., Kuchin, A. V., Dreval,’ I. V., Panteleeva, M. V., & Alekseev, I. N. (2005). Verbenone preparation method. Patent Russia, 2250208.

  6. Mihelich, E. D., & Eickhoff, D. J. (1983). A one-pot conversion of olefins to α, β-unsaturated carbonyl compounds. An easy synthesis of 2-cyclopentenone and related compounds. Journal of Organic Chemistry, 48, 4135–4137.

    Article  Google Scholar 

  7. Coxon, J. M., Dansted, E., Hartshorn, M. P., & Richards, K. E. (1968). The synthesis of some 1,2-epoxypinanes. Tetrahedron, 24, 1193–1197.

    Article  Google Scholar 

  8. Schmidt, H. (1960). 1-Hydroxy-pinocamphon und die beiden diastereomeren Pinenglykole. Chemische Berichte, 93, 2485–2490.

    Article  Google Scholar 

  9. Cooper, M. A., Salmon, J. R., & Whittaker, D. (1967). Stereochemistry of the verbenols. J. Chem. Soc. B, 12, 1259–1261.

    Article  Google Scholar 

  10. Mori, K., Mizumachi, N., & Matsui, M. (1976). Synthesis of optical pure (1S,4S,5S)-2-pinen-4-ol (cis-verbenol) and its antipode, the pheromone of Ips bark beetles. Agricultural and Biological Chemistry, 40, 1611–1615.

    Google Scholar 

  11. Reece, C. A., Rodin, J. O., Brownlee, R. G., Duncan, W. G., & Silverstein, R. M. (1968). Synthesis of the principal components of the sex attractant from male Ips confuses frass: 2-Methyl-6-methylene-7-octen-4-ol, 2-methyl-6-methylene-2,7-octadien-4-ol and cis-verbenol. Tetrahedron, 24, 4249–4256.

    Article  Google Scholar 

  12. Frolova, L. L., & Dreval’ I.V., Panteleeva M.V., Ipatova E.U., Alekseev I.N., Kutchin A.V. . (2003). Favorable effect of CeIII on the stereoselectivity of reduction of verbenone to cis-verbenol. Russian Chemical Bulletin, 52(2), 498–501.

    Article  Google Scholar 

  13. Frolova, L. L., Kuchin, A. V., Dreval,’ I. V., Panteleeva, M. V., & Alekseev, I. N. (2002). Method of synthesis of cis-verbenol. Patent Russia, 2189967.

  14. Frolova, L. L., Kuchin, A. V., Dreval,’ I. V., Panteleeva, M. V., & Alekseev, I. N. (2001). Method of preparing myrtenol. Patent Russia, 2176994.

  15. Regan, A. F. (1969). The preparation and stereochemistry of the verbanols and verbanones. Tetrahedron, 25, 3801–3805.

    Article  Google Scholar 

  16. Brown, H. C., Murray, K. J., Murray, L. J., Snover, J. A., & Zweifel, G. (1960). Hydroboration. V. A study of convenient new preparative procedures for the hydroboration of olefins. Journal of the American Chemical Society, 83, 4233–4241.

    Article  Google Scholar 

  17. Kiesgen de Richter, R., Bonato, M., Follet, M., & Kamenka, J. (1990). The (+)- and (-)-[2-(1,3-dithianyl)]myrtanylborane. Solid and stable monoalkylboranes for asymmetric hydroboration. Journal of Organic Chemistry, 55, 2855–2860.

    Article  Google Scholar 

  18. Carlson, R. G., & Pierce, J. K. (1971). Synthesis and stereochemistry of the four isomeric pinane-2,3-diols. Journal of Organic Chemistry, 36(16), 2319.

    Article  Google Scholar 

  19. Arbuzov, B. A., Ratner, V. V., Isaeva, Z. G., & Abaeva, NKh. (1974). Oxidation of 2-carene by potassium permanganate. Bull. A. Sci. USSR. Div. Chem. Sci., 12, 2762.

    Google Scholar 

  20. Arbuzov, B. A., Isaeva, Z. G., Dyakonova, R. R., Saykhutdinov, V. A., & Kazakova, EKh. (1972). Synthesis of 3β,4β-carandiol. Bull. A. Sci. USSR. Div. Chem. Sci., 7, 1680.

    Google Scholar 

  21. Volcho, K. P., Rogoza, L. N., Salakhutdinov, N. F., Tolstikov, A. G., & Tolstikov, G. A. (2005). Preparative chemistry of terpenoids, 1st part. Siberian Branch of the Russian Academy of Sciences.

    Google Scholar 

  22. Garipov, M. R., Sabirova, A. E., Pavelyev, R. S., Shtyrlin, N. V., Lisovskaya, S. A., et al. (2020). Targeting pathogenic fungi, bacteria and fungal-bacterial biofilms by newly synthesized quaternary ammonium derivative of pyridoxine and terbinafine with dual action profile. Bioorganic Chemistry, 104, 104306. https://doi.org/10.1016/j.bioorg.2020.104306

    Article  Google Scholar 

  23. Acker, C. I., Brandão, R., Rosário, A. R., & Nogueira, C. W. (2009). Antioxidant effect of alkynylselenoalcohol compounds on liver and brain of rats in vitro. Environmental Toxicology and Pharmacology, 28, 280–287.

    Article  Google Scholar 

  24. Stefanello, S. T., Prestes, A. S., Ogunmoyole, T., Salman, S. M., Schwab, R. S., Brender, C. R., Dornelles, L., Rocha, J. B. T., & Soares, F. A. A. (2013). Evaluation of in vitro antioxidant effect of new mono and diselenides. Toxicology in Vitro, 27(5), 1433–1439.

    Article  Google Scholar 

  25. Asakawa, T., & Matsushita, S. (1980). Coloring condition of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids, 15, 137–140.

    Article  Google Scholar 

  26. Takebayashi, J., Chen, J., & Tai, A. (2010). A method for evaluation of antioxidant activity based on inhibition of free radical-induced erythrocyte hemolysis. Advanced Protocols in Oxidative Stress II Methods in Molecular Biology, 594, 287–296. https://doi.org/10.1007/978-1-60761-411-1_20

    Article  Google Scholar 

  27. Krishnan-Natesan, S. (2009). Terbinafine: A pharmacological and clinical review. Expert Opinion on Pharmacotherapy, 10, 2723–2733. https://doi.org/10.1517/14656560903307462

    Article  Google Scholar 

  28. Gomes, B. S., Neto, B. P. S., Lopes, E. M., Cunha, F. V. M., Araújo, A. R., Wanderley, C. W. S., et al. (2017). Anti-inflammatory effect of the monoterpene myrtenol is dependent on the direct modulation of neutrophil migration and oxidative stress. Chemico-Biological Interactions, 273, 73–81. https://doi.org/10.1016/j.cbi.2017.05.019

    Article  Google Scholar 

  29. Librowski, T., & Moniczewski, A. (2010). Strong antioxidant activity of carane derivatives. Pharmacological Reports, 62, 178–184.

    Article  Google Scholar 

  30. Baccouri B., & Rajhi I. (2021) Potential antioxidant activity of terpenes. Terpenes and Terpenoids - Recent Advances, IntechOpen.https://doi.org/10.5772/intechopen.96638

  31. Chukicheva, I. Y., Buravlev, E. V., Fedorova, I. V., Borisenkov, M. F., & Kutchin, A. V. (2010). Antioxidant properties of terpene-substituted phenols. Russian Chemical Bulletin, 59(12), 2276–2280.

    Article  Google Scholar 

  32. Plotnikov, M. B., Smolyakova, V. I., Ivanov, I. S., Buravlev, E. V., Chukicheva, IYu., Kutchin, A. V., & Krasnov, E. A. (2011). Synthesis and biological activity of o-isobornylphenol derivatives. Pharmaceutical Chemistry Journal, 44(10), 530–533.

    Article  Google Scholar 

  33. Buravlev, E. V., & Shevchenko, O. G. (2020). Synthesis and antioxidant properties of N-substituted aminomethyl derivatives of 2-isobornylphenol. Russian Chemical Bulletin, 69(10), 1971–1978.

    Article  Google Scholar 

  34. Buravlev, E. V., Shevchenko, O. G., & Kutchin, A. V. (2021). Synthesis and comparative evaluation of the antioxidant activity for some new derivatives of 2,6-diisobornylphenol bearing an aminomethyl group at the position 4. Russian Chemical Bulletin, 70(1), 183–190.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant No 15–14-00046 and the Program of Competitive Growth of Kazan Federal University. The study of antifungal activity was conducted with the financial support of the charitable foundation of PJSC TATNEFT. The study of hemolytic and antioxidant activity was conducted with the financial support by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. AAAA-A18-118011120004–5). The authors would like to thank the general director of PJSC TATNEFT Nail Maganov for his ongoing collaboration with our department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliya E. Nikitina.

Ethics declarations

Research Involving Humans and Animals Statement

None.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitina, L.E., Lisovskaya, S.A., Startseva, V.A. et al. Biological Activity of Bicyclic Monoterpene Alcohols. BioNanoSci. 11, 970–976 (2021). https://doi.org/10.1007/s12668-021-00912-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00912-8

Keywords