Skip to main content
Log in

Resveratrol Loaded Cubic Phase Nanoparticles with Enhanced Oral Bioavailability

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Resveratrol (RES), a naturally occurring hydrophobic polyphenolic compound, has shown potential anticancer activity. However, due to low aqueous solubility and extensive first pass metabolism (primarily by cytochrome enzymes), it shows poor oral bioavailability. In the present work, novel RES loaded cubosomes of glycerol monooleate (GMO) and Gelucire 44/14 (GL44) (RES-Cubs) were prepared. RES-Cubs were prepared by emulsion evaporation technique and optimized using 32 factorial design. The optimized RES-Cubs were assessed for particle size, zeta potential, entrapment efficiency, FTIR, TEM, SAXS, in vitro resveratrol release and oral bioavailability. RES-Cubs showed an average particle size of 121.7 ± 2.54 nm with adequate entrapment efficiency of about 82.0 ± 2.35% w/w. The analysis of SAXS profile of RES-Cubs revealed Pn3m crystallographic space group containing diamond cubic phase. In vitro RES release profile of RES-Cubs exhibited markedly sustained release of resveratrol. Furthermore, RES-Cubs demonstrated considerable enhancement in oral bioavailability (ninefold) of resveratrol as compared to RES alone. The developed RES loaded cubosomes bearing cytochrome enzyme inhibitor property can act as promising nanocarrier in the delivery of lipophilic drugs with a drawback of in vivo degradation by cytochrome enzymes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kulkarni,  S. S., Cantó, C. (2015). The molecular targets of resveratrol. Biochim Biophys Acta, 1852(6), 1114–23. https://doi.org/10.1016/j.bbadis.2014.10.005

  2. Amri, A., Chaumeil, J. C., Sfar, S., & Charrueau, C. (2012). Administration of resveratrol: What formulation solutions to bioavailability limitations? Journal of Controlled Release, 158, 182–193. https://doi.org/10.1016/j.jconrel.2011.09.083

    Article  Google Scholar 

  3. El-Mohsen, M. A., Bayele, H., Kuhnle, G., Gibson, G., Debnam, E., Srai, S. K., et al. (2006). Distribution of [H]trans-resveratrol in rat tissues following oral administration. British Journal of Nutrition, 96, 62. https://doi.org/10.1079/BJN20061810

    Article  Google Scholar 

  4. Singh, C. K., Ndiaye, M. A., & Ahmad, N. (2015). Resveratrol and cancer: Challenges for clinical translation. Biochim Biophys Acta - Mol Basis Dis, 1852, 1178–1185. https://doi.org/10.1016/j.bbadis.2014.11.004

    Article  Google Scholar 

  5. Roger, E., Lagarce, F., Garcion, E., & Benoit, J. P. (2009). Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. Journal of Controlled Release, 140, 174–181. https://doi.org/10.1016/j.jconrel.2009.08.010

    Article  Google Scholar 

  6. Hao, J., Gao, Y., Zhao, J., Zhang, J., Li, Q., Zhao, Z., et al. (2015). Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using Box-Behnken design. An Official Journal of the American Association of Pharmaceutical Scientists, 16, 118–128. https://doi.org/10.1208/s12249-014-0211-y

    Article  Google Scholar 

  7. Jadhav, P., Bothiraja, C., & Pawar, A. (2016). Resveratrol-piperine loaded mixed micelles: Formulation, characterization, bioavailability, safety and in vitro anticancer activity. RSC Advances, 6, 112795–112805. https://doi.org/10.1039/C6RA24595A

    Article  Google Scholar 

  8. Isailović, B. D., Kostić, I. T., Zvonar, A., Dordević, V. B., Gašperlin, M., Nedović, V. A., et al. (2013). Resveratrol loaded liposomes produced by different techniques. Innovative Food Science and Emerging Technologies, 19, 181–189. https://doi.org/10.1016/j.ifset.2013.03.006

    Article  Google Scholar 

  9. Jose, S., Anju, S. S., Cinu, T. A., Aleykutty, N. A., Thomas, S., & Souto, E. B. (2014). In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. International Journal of Pharmaceutics, 474, 6–13. https://doi.org/10.1016/j.ijpharm.2014.08.003

    Article  Google Scholar 

  10. Shah, S., Nisar, Z., Nisar, J., Akram, M., & Ghotekar, S. O. R. (2021). Nanobiomedicine: A new approach of medicinal plants and their therapeutic modalities. J Mater Environ Sci, 12, 1–14.

    Google Scholar 

  11. Pan, X., Han, K., Peng, X., Yang, Z., Qin, L., Zhu, C., et al. (2013). Nanostructured cubosomes as advanced drug delivery system. Current Pharmaceutical Design, 19, 6290–6297. https://doi.org/10.2174/1381612811319350006

    Article  Google Scholar 

  12. Karami, Z., & Hamidi, M. (2016). Cubosomes: Remarkable drug delivery potential. Drug Discovery Today, 21, 789–801. https://doi.org/10.1016/j.drudis.2016.01.004

    Article  Google Scholar 

  13. Guo, C., Wang, J., Cao, F., Lee, R. J., & Zhai, G. (2010). Lyotropic liquid crystal systems in drug delivery. Drug Discovery Today, 15, 1032–1040. https://doi.org/10.1016/j.drudis.2010.09.006

    Article  Google Scholar 

  14. Patil, S. S., Venugopal, E., Bhat, S., Mahadik, K. R., & Paradkar, A. R. (2012). Probing influence of mesophasic transformation on performance of self-emulsifying system: Effect of ion. Molecular Pharmaceutics, 9, 318–324. https://doi.org/10.1021/mp200541r

    Article  Google Scholar 

  15. Milak, S., & Zimmer, A. (2015). Glycerol monooleate liquid crystalline phases used in drug delivery systems. International Journal of Pharmaceutics, 478, 569–587. https://doi.org/10.1016/j.ijpharm.2014.11.072

    Article  Google Scholar 

  16. Da Fonseca Antunes, A. B., De Geest, B. G., Vervaet, C., & Remon, J. P. (2013). Gelucire 44/14 based immediate release formulations for poorly water-soluble drugs. Drug Development and Industrial Pharmacy, 39, 791–798. https://doi.org/10.3109/03639045.2012.709251

    Article  Google Scholar 

  17. Ren, S., Park, M. J., Kim, A., & Lee, B. J. (2008). In vitro metabolic stability of moisture-sensitive rabeprazole in human liver microsomes and its modulation by pharmaceutical excipients. Archives of Pharmacal Research, 31, 406–413. https://doi.org/10.1007/s12272-001-1171-z

    Article  Google Scholar 

  18. Jannin, V. (2009). Lauroyl polyoxylglycerides, functionalized coconut oil, enhancing the bioavailability of poorly soluble active substances. OCL - Ol Corps Gras Lipides, 16, 267–272. https://doi.org/10.1051/ocl.2009.0270

    Article  Google Scholar 

  19. Abdel-Bar, H. M., & el Basset Sanad, R. A. (2017). Endocytic pathways of optimized resveratrol cubosomes capturing into human hepatoma cells. Biomedicine & Pharmacotherapy, 93, 561–569. https://doi.org/10.1016/j.biopha.2017.06.093

    Article  Google Scholar 

  20. Hashem, F., Nasr, M., & Youssif, M. (2018). Formulation and characterization of cubosomes containing REB for improvement of oral absorption of the drug in human volunteers. J Adv Pharm Res, 2, 95–103.

    Article  Google Scholar 

  21. Badie, H., & Abbas, H. (2018). Novel small self-assembled resveratrol-bearing cubosomes and hexosomes: Preparation, charachterization, and ex vivo permeation. Drug Development and Industrial Pharmacy, 44, 2013–2025. https://doi.org/10.1080/03639045.2018.1508220

    Article  Google Scholar 

  22. Luo, Q., Lin, T., Zhang, C. Y., Zhu, T., Wang, L., Ji, Z., et al. (2015). A novel glyceryl monoolein-bearing cubosomes for gambogenic acid: Preparation, cytotoxicity and intracellular uptake. International Journal of Pharmaceutics, 493, 30–39. https://doi.org/10.1016/j.ijpharm.2015.07.036

    Article  Google Scholar 

  23. Brgles, M., Jurašin, D., Sikirić, M. D., Frkanec, R., & Tomašić, J. (2008). Entrapment of ovalbumin into liposomes - Factors affecting entrapment efficiency, liposome size, and zeta potential. Journal of Liposome Research, 18, 235–248. https://doi.org/10.1080/08982100802312762

    Article  Google Scholar 

  24. Jain, V., Swarnakar, N. K., Mishra, P. R., Verma, A., Kaul, A., Mishra, A. K., et al. (2012). Paclitaxel loaded PEGylated gleceryl monooleate based nanoparticulate carriers in chemotherapy. Biomaterials, 33, 7206–7220. https://doi.org/10.1016/j.biomaterials.2012.06.056

    Article  Google Scholar 

  25. Katsagonis, A., Atta-Politou, J., & Koupparis, M. A. (2005). HPLC method with UV detection for the determination of trans-resveratrol in plasma. Journal of Liquid Chromatography & Related Technologies, 28, 1393–1405.

    Article  Google Scholar 

  26. Kassem, A. A., Mohsen, A. M., Ahmed, R. S., & Essam, T. M. (2016). Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: Design, optimization, in vitro and in vivo evaluation. Journal of Molecular Liquids, 218, 219–232. https://doi.org/10.1016/j.molliq.2016.02.081

    Article  Google Scholar 

  27. Gandhi, P., Patil, S., Aher, S., & Paradkar, A. (2016). Ultrasound-assisted preparation of novel ibuprofen-loaded excipient with improved compression and dissolution properties. Drug Development and Industrial Pharmacy, 42, 1553–1563. https://doi.org/10.3109/03639045.2016.1151035

    Article  Google Scholar 

  28. Patil, S. S., Roy, K., Choudhary, B., & Mahadik, K. R. (2016). Fabrication of novel GMO/Eudragit E100 nanostructures for enhancing oral bioavailability of carvedilol. Drug Development and Industrial Pharmacy, 42, 1300–1307. https://doi.org/10.3109/03639045.2015.1128440

    Article  Google Scholar 

  29. Zhao, X. Y., Zhang, J., Zheng, L. Q., & Li, D. H. (2004). Studies of cubosomes as a sustained drug delivery system. J Dispers Sci Technol, 25, 795–799. https://doi.org/10.1081/DIS-200035589

    Article  Google Scholar 

  30. Yang, Z., Tan, Y., Chen, M., Dian, L., Shan, Z., Peng, X., et al. (2012). Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability. An Official Journal of the American Association of Pharmaceutical Scientists, 13, 1483–1491. https://doi.org/10.1208/s12249-012-9876-2

    Article  Google Scholar 

  31. Yaghmur, A., Rappolt, M., Oøstergaard, J., Larsen, C., & Larsen, S. W. (2012). Characterization of bupivacaine-loaded formulations based on liquid crystalline phases and microemulsions: The effect of lipid composition. Langmuir, 28, 2881–2889. https://doi.org/10.1021/la203577v

    Article  Google Scholar 

  32. Nguyen, T. H., Hanley, T., Porter, C. J. H., & Boyd, B. J. (2011). Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2011.03.033

    Article  Google Scholar 

  33. Peng, X., Zhou, Y., Han, K., Qin, L., Dian, L., Li, G., et al. (2015). Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des Devel Ther. https://doi.org/10.2147/DDDT.S86370

    Article  Google Scholar 

  34. Priano, L., Esposti, D., Esposti, R., Castagna, G., De Medici, C., Fraschini, F., et al. (2007). Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. Journal of Nanoscience and Nanotechnology, 7, 3596–3601. https://doi.org/10.1166/jnn.2007.809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharvil Patil.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement.

Not applicable.

Informed Consent.

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, N.K., Torris, A., Bhat, S. et al. Resveratrol Loaded Cubic Phase Nanoparticles with Enhanced Oral Bioavailability. BioNanoSci. 11, 1108–1118 (2021). https://doi.org/10.1007/s12668-021-00892-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00892-9

Keywords

Navigation