Skip to main content
Log in

Anti-inflammatory and Cytotoxicity activities of Green Synthesized Silver Nanoparticles from Stem Bark of Terminalia brownii

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present study focused on synthesizing, characterization, and evaluating an in vitro anti-inflammatory and cytotoxic potential of green synthesized silver nanoparticles (TB-Ag NPs) from aqueous stem bark extract of Terminalia brownii (TB-AQ). The TB-Ag NPs were characterized by ultraviolet (UV)-visible, Fourier-transform infrared spectroscopy (FTIR), dynamic light X-ray diffraction, and energy-dispersive X-ray spectroscopy, as well as scanning and transmission electron microscopy. The in vitro anti-inflammatory and cytotoxic potential of TB-Ag NPs and TB-AQ were evaluated against RAW 264.7 macrophage and MDA-MB-231 triple-negative breast cancer cells, respectively, by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Further, the inhibitory effect on LPS-induced production of inflammatory mediators PGE2 and NO in RAW 264.7 cell lines was evaluated. The results showed that TB-Ag NPs were crystalline with face-centered spherical polydispersed shaped nanoparticles with an average size between 20 and 67 ± 0.5 nm. Also, TB-Ag NPs had no cytotoxic effect on RAW cells (normal healthy cells) in the range of 6.25–50 µg/mL. Besides, TB-Ag NPs at 50 µg/mL concentration exhibited 67.02% of cytotoxic effect against MDA-MB-231 cells with observed IC50 values of 29.08 µg/mL. TB-Ag NPs have shown significantly in vitro anti-inflammatory activities by exhibiting dose-dependent NO and PGE2 inhibitory activities with IC50 values of 32.82 µg/mL and 67.25 µg/mL, respectively. This study concluded that the novel green synthesized TB-Ag NPs can be used as a potential novel anti-inflammatory and cytotoxicity agent to treat inflammatory-related diseases and inflammatory breast cancer (invasive ductal carcinoma) with biocompatible nature by targeting the tumor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18 
Fig. 19 
Fig. 20 

Similar content being viewed by others

References

  1. Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., Zhao, L. (2017). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218. https://doi.org/10.18632/oncotarget.23208

  2. Furman, D., Campisi, J., Verdin, E., et al. (2019). Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 25(12), 1822–1832. https://doi.org/10.1038/s41591-019-0675-0

    Article  Google Scholar 

  3. Pahwa, R., Goyal, A., Bansal, P., Jialal, I. (2020). Chronic inflammation. In: StatPearls. Treasure Island (FL): StatPearls Publishing.

  4. Ricciotti, E., & Fitz Gerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(5), 986–1000. https://doi.org/10.1161/ATVBAHA.110.207449

    Article  Google Scholar 

  5. Steinmeyer, J. (2000). Pharmacological basis for the therapy of pain and inflammation with non-steroidal anti-inflammatory drugs. Arthritis Research & Therapy, 2, 379–385. https://doi.org/10.1186/ar116

    Article  Google Scholar 

  6. Tabas, I., Glass, C. K. (2013). Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science (New York, N Y), 339(6116), 166-172.https://doi.org/10.1126/science.1230720.

  7. Li, B., Li, W., Li, X., & Zhou, H. (2017). Inflammation: A Novel Therapeutic Target/Direction in Atherosclerosis. Current Pharmaceutical Design, 23(8), 1216–1227. https://doi.org/10.2174/1381612822666161230142931

    Article  MathSciNet  Google Scholar 

  8. Javaid, A., Oloketuyi, S. F., Khan, M. M., & Khan, F. (2018). Diversity of bacterial synthesis of silver nanoparticles. BioNanoSci., 8, 43–59. https://doi.org/10.1007/s12668-017-0496-x

    Article  Google Scholar 

  9. Petschauer, J. S., Madden, A. J., Kirschbrown, W. P., Song, G., & Zamboni, W. C. (2015). The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents. Nanomed (Lond, Engl), 10(3), 447–463. https://doi.org/10.2217/nnm.14.179

    Article  Google Scholar 

  10. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  11. Yaqoob, S. B., Adnan, R., Rameez Khan, R. M., & Rashid, M. (2020). Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications. Frontiers in Chemistry, 8, 376. https://doi.org/10.3389/fchem.2020.00376

    Article  Google Scholar 

  12. El-Sayed, A., & Kamel, M. (2020). Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. Environmental Science and Pollution Research, 27, 19200–19213. https://doi.org/10.1007/s11356-019-06459-2

    Article  Google Scholar 

  13. Happy, A., Amatullah, N., & Venkat Kumar, S. (2019). Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomedicine & Pharmacotherapy, 109(2019), 2561–2572. https://doi.org/10.1016/j.biopha.2018.11.116

    Article  Google Scholar 

  14. Lee, S. H., & Jun, B. H. (2019). Silver nanoparticles: Synthesis and application for nanomedicine. International Journal of Molecular Sciences, 20(4), 865. https://doi.org/10.3390/ijms20040865

    Article  Google Scholar 

  15. Lakshmanan, G., Sathiyaseelan, A., Kalaichelvan, P., & Murugesan, K. (2018). Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: assessment of their antibacterial and anticancer activity. Karbala International Journal of Modern Sciences, 4(1), 61–68. https://doi.org/10.1016/j.kijoms.2017.10.007

    Article  Google Scholar 

  16. Palem, R. R., Ganesh, S. D., Kroneková, Z., Sláviková, M., Saha, N., Sáha, P. (2018). Green synthesis of silver nanoparticles and biopolymer nanocomposites: a comparative study on physico-chemical, antimicrobial and anticancer activity. Bulletin of Materials Science, 41(2), 55. https://doi.org/10.1007/s12034-018-1567-5

  17. Ratan, Z. A., Haidere, M. F., Nurunnabi, M., Shahriar, S. M., Ahammad, A., Shim, Y. Y., Reaney, M., & Cho, J. Y. (2020). Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancer, 12(4), 855. https://doi.org/10.3390/cancers12040855

    Article  Google Scholar 

  18. David, L., Moldovan, B., Vulcu, A., et al. (2014). Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids and Surfaces B, 122, 767–777. https://doi.org/10.1016/j.colsurfb.2014.08.018

    Article  Google Scholar 

  19. Saini, N., Thakur, A., Kaur, P., Gahlawat, S. K. (2019). Herbonanoceuticals: a novel beginning in drug discovery and therapeutics. In: R. Prasad, V. Kumar, M. Kumar, D. Choudhary (Eds), Nanobiotechnology in bioformulations nanotechnology in thelife sciences (pp. 161–186). Springer, Cham. https://doi.org/10.1007/978-3-030-17061-5-7

  20. Salem, S. S., Fouda, A. (2020). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biological Trace Element Research, 1–28. https://doi.org/10.1007/s12011-020-02138-3

  21. Deepali, S., Suvardhan, K., Krishna, B. (2019). Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 12(8), 3576–3600

  22. Abbai, R., Mathiyalagan, R., Markus, J., Kim, Y., Wang, C., Singh, P., Ahn, S., Farh, M. E., & Yang, D. C. (2016). Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. International Journal of Nanomedicine, 11, 3131–3143. https://doi.org/10.2147/IJN.S108549

    Article  Google Scholar 

  23. Efferth, T., Saeed, M., Mirghani, E., Alim, A., Yassin, Z., Saeed, E., Khalid, H. E., Daak, S. (2017). Integration of phytochemicals and phytotherapy into cancer precision medicine. Oncotarget, 8, 50284–50304. https://doi.org/10.18632/oncotarget.17466

  24. Salih, E. Y. A., Julkunen-Tiitto, R., Lampi, A. M., Kanninen, M., Luukkanen, O., Sipi, M., et al. (2018). Terminalia laxiflora and Terminalia brownii contain a broad spectrum of antimycobacterial compounds including ellagitannins, ellagic acid derivatives, triterpenes, fatty acids and fatty alcohols. Journal of Ethnopharmacology, 227, 82–96. https://doi.org/10.1016/j.jep.2018.04.030

    Article  Google Scholar 

  25. Wilson, R., & Woldogebre, M. (1973). Medicine and magic in Central Tigre: A contribution to the ethnobotany of the Ethiopian plateau. Economic Botany, 33, 29–34.

    Article  Google Scholar 

  26. Kamalakararao, K., Krishna Chaithanya, K., & Berihu, H. T. (2020). Drug Invention Today, 14(6), 1022–1026.

    Google Scholar 

  27. Das, S., Haldar, P., Pramanik, G., & Suresh, R. (2010). Evaluation of anti-inflammatory activity of Clerodendron infortunatum Linn. extract in rats. Global Journal of Pharmacology, 4(1), 48–50.

    Google Scholar 

  28. Trease, G. E., Evans, W. C. (1989). Phenols and phenolic glycosides, In: Textbook of pharmacognosy (12:343–383). Balliese, Tindall and Co Publishers.

  29. Roopashree, T., Dang, R., Rani, R., & Narendra, C. (2008). Antibacterial activity of antipsoriatic herbs: Cassia tora, Momordica charantia and Calendula officinalis. International Journal of Applied Research in Natural Products i, 1, 20–28.

    Google Scholar 

  30. Singleton, V., Orthofer, R., & Lamuela-Raventos, R. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    Article  Google Scholar 

  31. Meva, F. E., Segnou, M. L., Ebongue, C. O., Ntoumba, A. A., Steve, D. Y., Malolo, F. A. E., Ngah, L., Massai, H., & Mpondo, E. M. (2016). Unexplored vegetal green synthesis of silver nanoparticles: a preliminary study with Corchorus olitorus Linn and Ipomea batatas (L.) Lam. African Journal of Biotechnology, 15(10), 341–349. https://doi.org/10.5897/AJB2017.16024

    Article  Google Scholar 

  32. Kalpana, V. N., & Devi Rajeswari, V. (2018). A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorganic Chemistry and Applications, 2018, 3569758. https://doi.org/10.1155/2018/3569758

    Article  Google Scholar 

  33. Saranya, S., Eswari, A., Gayathri, E., Vijayarani, K. (2017). Green synthesis of metallic nanoparticles using aqueous plant extract and their antibacterial activity. International Journal of Current Microbiology and Applied Sciences, 6(6), 1834–184.https://doi.org/10.20546/ijcmas.2017.606.214

  34. Krishna Chaithanya, K., Gopalakrishnan, V. K., Hagos, Z., Nagaraju, B., Kamalakararao, K., Kebede, H., Patricia, P., John, D., Kasi, N., & Govinda, R. (2018). In vitro and In vivo anti-inflammatory activities of Mesua ferrea Linn. International Journal of Pharmacognosy and Phytochemical Research, 10, 103–111.

    Google Scholar 

  35. Liu, Y., Kim, S., Kim, Y. J., Perumalsamy, H., Lee, S., Hwang, E., & Yi, T. H. (2019). Green synthesis of gold nanoparticles using Euphrasia officinalis leaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in RAW 264.7 macrophages. International Journal of Nanomedicine, 14, 2945–2959. https://doi.org/10.2147/IJN.S199781

    Article  Google Scholar 

  36. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.

    Article  Google Scholar 

  37. Singh, P., Ahn, S., Kang, J. P., et al. (2018). In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: A green synthetic approach. Artif Cells Nanomed Biotechnol, 46(8), 2022–2032. https://doi.org/10.1080/21691401.2017.1408117

    Article  Google Scholar 

  38. Joo, T., Sowndhararajan, K., Hong, S., et al. (2014). Inhibition of nitric oxide production in LPS-stimulated RAW 264.7 cells by stem bark of Ulmus pumila L. Saudi J Biol Sci, 21(5), 427–435. https://doi.org/10.1016/j.sjbs.2014.04.003

    Article  Google Scholar 

  39. Baheeram, V., Malla, R., Kumari, S., Saha, A., & Mukkamala, S. (2019). Cytotoxic effect effect of photoluminescent RE3+ dopped Ca3(PO4)2 nanorods on breast cancer cell lines. IRBM, 40, 270–278. https://doi.org/10.1016/j.irbm.2019.05.001

    Article  Google Scholar 

  40. Uduma, E., Osonwa, U. E., Nedum, H. C., Onyegbule, F. A., & Ezugwu, C. O. (2016). Anti-diabetic effects of stem bark extract and fractions of Terminalia catappa Linn. (Combretaceae). Journal of Phytopharmacology, 5(5), 167–175.

    Article  Google Scholar 

  41. Hanaa, M., & Manal, A. (2014). Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(3), 1–11.

    Google Scholar 

  42. Ibrahim, H. M. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Science, 8, 265–267. https://doi.org/10.1016/j.jrras.2015.01.007

    Article  Google Scholar 

  43. Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2017). Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi Journal of Biological Sciences, 24(1), 45–50. https://doi.org/10.1016/j.sjbs.2015.09.00644

    Article  Google Scholar 

  44. Datta, A., Patra, C., Bharadwaj, K. S., Dimri, N., et al. (2017). Green synthesis of zinc oxide nanoparticles using Parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. Journal of Biotechnology & Biomaterials, 7, 271–276. https://doi.org/10.4172/2155-952X.1000271

    Article  Google Scholar 

  45. Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9, 852–858. https://doi.org/10.1039/b615357g

    Article  Google Scholar 

  46. Kumari, J., Mamta, B., & Ajeet, S. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effect with antibiotics. Journal of Radiation Research and Applied Science, 9, 3217–3227. https://doi.org/10.1016/j.jrras.2015.10.002

    Article  Google Scholar 

  47. Rani, K., Lekha, C., Parthiban, Vijaya (2018). Green synthesis and characterization of silver nanoparticles using leaf and stem aqueous extract of Pauzolzia Bennettiana and their antioxidant activity. Journal of Pharmacognosy and Phytochemistry, 7(Spl 5),  129–132.

  48. Nithya, P., Kaleeswari, S., & Poonkothai, M. (2014). Antimicrobial activity and phytochemical analysis of fruit extracts of Terminalia bellerica. Int J Pharm Pharmaceut Sci, 6, 639–642.

    Google Scholar 

  49. Sundararajan, B., Mahendran, G., Thamaraisel, R., & Ranjitha, K. B. (2016). Biological activities of synthesized silver nanoparticles from Cardiospermum halicacabum L.. Bulletin of Materials Science, 39(2), 423–431.

    Article  Google Scholar 

  50. Anandalakshmi, K., & Venugobal, J. (2017). Green synthesis and characterization of silver nanoparticles using Vitex negundo (Karu Nochchi) leaf extract and its antibacterial activity. Medicinal Chemistry, 7, 7. https://doi.org/10.4172/2161-0444.1000460

    Article  Google Scholar 

  51. Mukundan, D., Mohankumar, R., & Vasanthakumari, R. (2017). Comparative study of synthesized silver and gold nanoparticles using leaves extract of Bauhinia tomentosa Linn and their anticancer efficacy. Bulletin of Materials Science, 40, 335–344. https://doi.org/10.1007/s12034-017-1376-2

    Article  Google Scholar 

  52. Jannathul, F., & Lalitha, P. (2015). Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Progress in Biomaterials, 4(2–4), 113–121. https://doi.org/10.1007/s40204-015-0042-2

    Article  Google Scholar 

  53. LiuY, K. S., Kim, Y., Perumalsamy, H., Lee, S., Hwang, E., & Yi, T. (2019). Green syntheses of gold nanoparticles using Euphrasia officinalis leaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in RAW 264.7 macrophages. International Journal of Nanomedicine, 14, 2945–2959. https://doi.org/10.2147/IJN.S199781

    Article  Google Scholar 

  54. Navegantes, K., de Souza, G. R., & Pereira, P. (2017). Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. Journal of Translational Medicine, 15(1), 36. https://doi.org/10.1186/s12967-017-1141-8

    Article  Google Scholar 

  55. Parisi, L., Gini, E., & Baci, D. (2018). Tremolati, Fanuli M, Bassani B, Farronato G, Bruno A, Mortara L (2018) Macrophage polarization in chronic inflammatory diseases: Killers or builders? Journal of Immunology Research, 1–25, 8917804. https://doi.org/10.1155/2018/8917804

    Article  Google Scholar 

  56. KunnumakkaTa, A. B., Sailo, B. L., Banik, K., Harsha, C., Prasad, S., Gupta, S. C., Bharti, A. C., & Aggarwal, B. B. (2018). Chronic diseases, inflammation, and spices: how are they linked?. Journal of Translational Medicine, 16, 14. https://doi.org/10.1186/s12967-018-1381-2

    Article  Google Scholar 

  57. Fröhlich, E. (2012). The role of surface charges in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine, 7, 5577–5591. https://doi.org/10.2147/IJN.S36111

    Article  Google Scholar 

  58. Park, M., Neigh, A., & Vermeulen, J. (2011). The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 32, 9810–9817.

    Article  Google Scholar 

  59. Jang, S., Yang, J., Tettey, C., Kim, K., & Shin, H. (2016). In vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Materials Science & Engineering, C: Materials for Biological Applications, 68, 430–435. https://doi.org/10.1016/j.msec.2016.03.101

    Article  Google Scholar 

  60. Nagajyothi, P., Cha, S., Yang, I., Sreekanth, T., Kim, K., & Shin, H. (2015). Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. Journal of Photochemistry and Photobiology, B: Biology, 146, 10–17. https://doi.org/10.1016/j.jphotobiol.2015.02.008

    Article  Google Scholar 

  61. Ozdal, Z. D., Sahmetlioglu, E., Narin, I., & Cumaoglu, A. (2019). Synthesis of gold and silver nanoparticles using flavonoid quercetin and their effects on lipopolysaccharide-induced inflammatory response in microglial cells. Biotechnology, 9(6), 212. https://doi.org/10.1007/s13205-019-1739-z

    Article  Google Scholar 

  62. Legler, D., Bruchner, M., Uetz-von Allmen, E., & Krause, P. (2010). Prostaglandin E2 at a new glance: Novel insights in functional diversity offer therapeutic chances. International Journal of Biochemistry & Cell Biology, 42, 198–201. https://doi.org/10.1016/j.biocel.2009.09.015

    Article  Google Scholar 

  63. Banerjee, P. P., Bandyopadhyay, A., Harsha, S. N., Policegoudra, R. S., Bhattacharya, S., Karak, N., Chattopadhyay, A. (2017). Mentha arvensis (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells. Breastcancer (Dove Medical Press) 265–278. https://doi.org/10.2147/BCTT.S130952.

  64. Umar, H., Kavaz, D., & Rizaner, N. (2018). Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. International Journal of Nanomedicine, 14, 87–100. https://doi.org/10.2147/IJN.S186888

    Article  Google Scholar 

  65. Bethu, M., Netala, V., Domdi, L., Tartte, V., & Janapala, V. (2018). Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: An insight into the mechanism. Artificial Cells, Nanomedicine, and Biotechnology, 46, 104–114. https://doi.org/10.1080/21691401.2017.1414824

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the office of Research and Post Graduate Studies Directorate, Aksum University, Axum, Ethiopia, for providing us financial support in the form of a student project. We extend our deepest thanks to the Department of Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, for characterization studies and Cancer Biology Lab, Department of Biochemistry, and Bioinformatics, GITAM University, Visakhapatnam, Andhra Pradesh, India, to support us to carry out anticancer activities.

Funding

This project was funded by the Post Graduate Research Directorate, Aksum University, Axum, Ethiopia, for providing financial support in the form of a Post Graduate Student project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Krishna Chaithanya.

Ethics declarations

Informed Consent

All authors have seen and approved the manuscript for submission.

Research Involving Humans and Animals Statement

None.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berihu, H.T., Welderfael, T., Tekluu, B. et al. Anti-inflammatory and Cytotoxicity activities of Green Synthesized Silver Nanoparticles from Stem Bark of Terminalia brownii. BioNanoSci. 11, 998–1016 (2021). https://doi.org/10.1007/s12668-021-00885-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00885-8

Keywords

Navigation