Skip to main content

Advertisement

Log in

Structural Properties and Antimicrobial Activities of Polyalthia longifolia Leaf Extract-Mediated CuO Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Herein, we report the eco-benevolent fabrication of copper oxide nanoparticles (CuONPs) by a green process using Polyalthia longifolia leaf extract (PLLE). Phytochemical screening for the PLLE evinced the existence of tannins, terpenoids, saponins, phenols, glycosides, and flavonoids. The produced CuONPs were explored by using XRD, zeta potential, DLS, EDAX, HRTEM, BET-surface area, UV-DRS, photoluminescence, and FTIR to ascertain its structural, morphological, and optical properties. Besides, these CuONPs evinced noteworthy bactericidal performance against Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Streptococcus pyogenes (S. pyogenes), and good antifungal performance against Aspergillus niger (A. niger), Epidermophyton floccosum (E. floccosum), Aspergillus clavatus (A. clavatus), and Candida albicans (C. albicans). The results indicated that the proactive eco-benign fabrication of CuONPs by sustainable “green chemistry” approaches can offer a convenient alternative to orthodox multi-step strategies for the creation of CuONPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., & Varma, R. S. (2016). Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chemical Reviews, 116(6), 3722–3811.

    Article  Google Scholar 

  2. Iravani, S., & Varma, R. S. (2020). Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chemistry, 22(9), 2643–2661.

    Article  Google Scholar 

  3. Ghotekar, S. (2019). A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian Journal of Green Chemistry, 3(2), 187–200.

    Google Scholar 

  4. Akintelu, S. A., & Folorunso, A. S. (2020). A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. BioNanoScience., 10(4), 848–863.

    Article  Google Scholar 

  5. Yadav, S., Jain, A., & Malhotra, P. (2019). A review on the sustainable routes for the synthesis and applications of cuprous oxide nanoparticles and their nanocomposites. Green Chemistry, 21(5), 937–955.

    Article  Google Scholar 

  6. Tarannum, N., & Gautam, Y. K. (2019). Facile green synthesis and applications of silver nanoparticles: a state-of-the-art review. RSC Advances, 9(60), 34926–34948.

    Article  Google Scholar 

  7. Ghotekar, S., Pagar, T., Pansambal, S., & Oza, R. (2020). A review on green synthesis of sulfur nanoparticles via plant extract, characterization and its applications. Advanced Journal of Chemistry-Section B., 2(3), 128–143.

    Google Scholar 

  8. Iravani, S., & Varma, R. S. (2020). Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chemistry, 22(9), 2643–2661.

    Article  Google Scholar 

  9. Frewer, L. J., Gupta, N., George, S., Fischer, A. R. H., Giles, E. L., & Coles, D. (2014). Consumer attitudes towards nanotechnologies applied to food production. Trends in Food Science and Technology, 40, 211–225.

    Article  Google Scholar 

  10. Nasrollahzadeh, M., Mahmoudi-Gom Yek, S., Motahharifar, N., & Ghafori Gorab, M. (2019). Recent developments in the plant-mediated green synthesis of ag-based nanoparticles for environmental and catalytic applications. The Chemical Record., 19(12), 2436–2479.

    Article  Google Scholar 

  11. Ghotekar, S., Pagar, K., Pansambal, S., Murthy, H. A., & Oza, R. (2020). A review on eco-friendly synthesis of bivo4 nanoparticle and its eclectic applications. Advanced Journal of Science and Engineering., 1(4), 106–112.

    Google Scholar 

  12. Wang, X., Hu, C., Liu, H., Du, G., He, X., & Xi, Y. (2010). Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sensors and Actuators B: Chemical, 144(1), 220–225.

    Article  Google Scholar 

  13. Battez, A. H., González, R., Viesca, J. L., Fernández, J. E., Fernández, J. D., Machado, A., Chou, R., & Riba, J. (2008). CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear., 265(3-4), 422–428.

    Article  Google Scholar 

  14. Liu, X., Jiang, Z., Li, J., Zhang, Z., & Ren, L. (2010). Super-hydrophobic property of nano-sized cupric oxide films. Surface and Coating Technology, 204(20), 3200–3204.

    Article  Google Scholar 

  15. Wanninayake, A. P., Gunashekar, S., Li, S., Church, B. C., & Abu-Zahra, N. (2015). Performance enhancement of polymer solar cells using copper oxide nanoparticles. Semiconductor Science and Technology, 30(6), 064004.

    Article  Google Scholar 

  16. Shinde, S. K., Dubal, D. P., Ghodake, G. S., & Fulari, V. J. (2015). Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RSC Advances, 5(6), 4443–4447.

    Article  Google Scholar 

  17. Sankar, R., Manikandan, P., Malarvizhi, V., Fathima, T., Shivashangari, K. S., & Ravikumar, V. (2014). Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 121, 746–750.

    Article  Google Scholar 

  18. Rehana, D., Mahediran, D., Senthil Kumar, R., & Kalilur Rahiman, A. (2017). Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomedicine & Pharmacotherapy, 89, 1067–1077.

    Article  Google Scholar 

  19. Pansambal, S., Deshmukh, K., Savale, A., Ghotekar, S., Pardeshi, O., Jain, G., Aher, Y., & Pore, D. (2017). Phytosynthesis and biological activities of fluorescent CuO nanoparticles using Acanthospermum hispidum L. extract. Journal of Nanostructures., 7(3), 165–174.

    Article  Google Scholar 

  20. Salavati-Niasari, M., & Davar, F. (2009). Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Materials Letters, 63(3-4), 441–443.

    Article  Google Scholar 

  21. Yu, Y., & Zhang, J. (2009). Solution-phase synthesis of rose-like CuO. Materials Letters, 63(21), 1840–1843.

    Article  Google Scholar 

  22. Vijaya Kumar, R., Elgamiel, R., Diamant, Y., Gedanken, A., & Norwig, J. (2001). Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly (vinyl alcohol) and its effect on crystal growth of copper oxide. Langmuir., 17(5), 1406–1410.

    Article  Google Scholar 

  23. Aslani, A., & Oroojpour, V. (2011). CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route. Physica B: Condensed Matter, 406(2), 144–149.

    Article  Google Scholar 

  24. Wang, H., Xu, J. Z., Zhu, J. J., & Chen, H. Y. (2002). Preparation of CuO nanoparticles by microwave irradiation. Journal of Crystal Growth, 244(1), 88–94.

    Article  Google Scholar 

  25. Keßler, M. T., Robke, S., Sahler, S., & Prechtl, M. H. (2014). Ligand-free copper (I) oxide nanoparticle-catalysed amination of aryl halides in ionic liquids. Catalysis Science & Technology, 4(1), 102–108.

    Article  Google Scholar 

  26. Borgohain, K., Singh, J. B., Rao, M. R., Shripathi, T., & Mahamuni, S. (2000). Quantum size effects in CuO nanoparticles. Physical Review B, 61(16), 11093.

    Article  Google Scholar 

  27. Chiang, C. Y., Aroh, K., & Ehrman, S. H. (2012). Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting–Part I. CuO nanoparticle preparation. International Journal of Hydrogen Energy, 37(6), 4871–4879.

    Article  Google Scholar 

  28. Kayani, Z. N., Umer, M., Riaz, S., & Naseem, S. (2015). Characterization of copper oxide nanoparticles fabricated by the sol–gel method. Journal of Electronic Materials, 44(10), 3704–3709.

    Article  Google Scholar 

  29. Pallela, P. N., Ummey, S., Ruddaraju, L. K., Kollu, P., Khan, S., & Pammi, S. V. (2019). Antibacterial activity assessment and characterization of green synthesized CuO nano rods using Asparagus racemosus roots extract. SN Applied Sciences., 1(5), 421.

    Article  Google Scholar 

  30. Priya, D. D., Roopan, S. M., Singh, S., Bansal, J., Shanavas, S., Khan, M. R., Al-Dhabi, N. A., Arasu, M. V., & Duraipandiyan, V. (2020). Phyto-synthesis of CuO nano-particles and its catalytic application in CS bond formation. Materials Letters, 266, 127486.

    Article  Google Scholar 

  31. Velsankar K, RM AK, Preethi R, Muthulakshmi V, Sudhahar S (2020) Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. Journal of Environmental Chemical Engineering 8(5): 104123.

  32. Rajivgandhi, G., Maruthupandy, M., Muneeswaran, T., Ramachandran, G., Manoharan, N., Quero, F., Anand, M., & Song, J. M. (2019). Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin resistant ESBL producing bacteria. Microbial Pathogenesis, 127, 267–276.

    Article  Google Scholar 

  33. Aher, Y. B., Jain, G. H., Patil, G. E., Savale, A. R., Ghotekar, S. K., Pore, D. M., Pansambal, S. S., & Deshmukh, K. K. (2017). Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against diverse pathogens. International Journal of Molecular and Clinical Microbiology., 7(1), 776–786.

    Google Scholar 

  34. Pagar, K., Ghotekar, S., Pagar, T., Nikam, A., Pansambal, S., Oza, R., Sanap, D., & Dabhane, H. (2020). Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations. Asian Journal of Nanosciences and Materials., 3(1), 15–23.

    Google Scholar 

  35. Devipriya, D., & Roopan, S. M. (2017). Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger. Aspergillus flavus. Materials Science and Engineering: C., 80, 38–44.

    Article  Google Scholar 

  36. Pansambal, S., Ghotekar, S., Oza, R., & Deshmukh, K. (2019). Biosynthesis of CuO nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves and their catalytic performance for the 5-aryl-1,2,4-triazolidine-3- thione derivatives synthesis. Int. J Sci. Res. Sci. Tech., 5(4), 122–128.

    Google Scholar 

  37. Pansambal, S., Gawande, S., Ghotekar, S., Oza, R., & Deshmukh, K. (2017). Green synthesis of CuO nanoparticles using Ziziphus mauritiana L. extract and its characterizations. International Journal of Scientific Research in Science and Technology, 3, 142–146.

    Google Scholar 

  38. Jothy, S. L., Choong, Y. S., Saravanan, D., Deivanai, S., Latha, L. Y., Vijayarathna, S., & Sasidharan, S. (2013). Polyalthia longifolia Sonn: an ancient remedy to explore for novel therapeutic agents. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(1), 714–730.

    Google Scholar 

  39. Dixit P, Mishra T, PALa MA, Rana TS, Upreti DK (2014) Polyalthia longifolia and its pharmacological activities. International Journal for Innovative Research in Science 2:17-25

  40. Fransworth, N. R. (1996). Biological and phytochemical screeningof plants. Journal of Pharmaceutical Sciences, 55, 225–227.

    Article  Google Scholar 

  41. Rattan, A. (2000). Antimicrobials in laboratory medicine. Churchill B I, Livingstone, New Delhi., 85–108.

  42. Bangale, S., & Ghotekar, S. (2019). Bio-fabrication of silver nanoparticles using Rosa Chinensis L. extract for antibacterial activities. International Journal of Nano Dimension., 10(2), 217–224.

    Google Scholar 

  43. Wiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3, 163–175.

    Article  Google Scholar 

  44. Ghotekar, S., Pansambal, S., Pagar, K., Pardeshi, O., & Oza, R. (2018). Synthesis of CeVO4 nanoparticles using sol-gel auto combustion method and their antifungal activity. Nano Research, 3(2), 189–196.

    Google Scholar 

  45. Patterson, A. (1939). The Scherrer formula for X-Ray particle size determination. Physics Review, 56, 978–982.

    Article  MATH  Google Scholar 

  46. Bhattacharjee, S. (2016). DLS and zeta potential–what they are and what they are not? Journal of Controlled Release, 235, 337–351.

    Article  Google Scholar 

  47. Prakash, S., Elavarasan, N., Venkatesan, A., Subashini, K., Sowndharya, M., & Sujatha, V. (2018). Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Advanced Powder Technology, 29(12), 3315–3326.

    Article  Google Scholar 

  48. Siddiqui, H., Qureshi, M. S., & Haque, F. Z. (2014). One-step, template-free hydrothermal synthesis of CuO tetrapods. Optik., 125(17), 4663–4667.

    Article  Google Scholar 

  49. Aygün, S., & Cann, D. (2005). Hydrogen sensitivity of doped CuO/ZnO heterocontact sensors. Sensors and Actuators B: Chemical, 106(2), 837–842.

    Article  Google Scholar 

  50. Sone, B. T., Diallo, A., Fuku, X. G., Gurib-Fakim, A., & Maaza, M. (2017). Biosynthesized CuO nano-platelets: physical properties and enhanced thermal conductivity nanofluidics. Arabian Journal of Chemistry, 5, 128.

    Google Scholar 

Download references

Acknowledgements

Authors PN and SG are grateful to SAIF-NEHU Shillong for providing the HRTEM facilities supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Ghotekar.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagore, P., Ghotekar, S., Mane, K. et al. Structural Properties and Antimicrobial Activities of Polyalthia longifolia Leaf Extract-Mediated CuO Nanoparticles. BioNanoSci. 11, 579–589 (2021). https://doi.org/10.1007/s12668-021-00851-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00851-4

Keywords

Navigation