Skip to main content

Advertisement

Log in

Antioxidant and Anticancer Activities of Gold Nanoparticles Synthesized Using Aqueous Leaf Extract of Ziziphus nummularia

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The green synthesis of gold nanoparticles (AuNPs) using plants has gained much interest due to their potential widespread biomedical applications as compared to conventional tools. Due to small size and high surface to volume ratio, nanoparticles exhibited complete new or improved properties as compared to the bulk materials. Thus, the present study reports green synthesis of gold nanoparticles (AuNPs) using Ziziphus nummularia leaf extract and their antioxidant and anticancer activities. AuNPs were synthesized using aqueous leaf extract, and characterization was done by spectroscopic and microscopic techniques like UV-Vis, TGA, FITR, XRD, and TEM. The characteristic peak was at 534 nm by UV-Vis spectra. TEM disclosed the green synthesized particles to be 11–12 nm in size and spherical in shape. The green synthesized AuNPs showed dose-dependent cytotoxicity against human cervical cancer cell line, breast cancer cell line, and fibroblast normal cell line. AuNPs were found to be nontoxic towards normal cell line. The genotoxicity study revealed the nontoxic nature at lower concentration. The biosynthesized AuNPs showed effective dose-dependent in vitro antioxidant activity against DPPH (IC50 = 520 μg/ml), SO (IC50 = 330 μg/ml), and ABTS (IC50 = 690 μg/ml) radicals. Considering the results together, AuNPs exhibited three different bioactivities (3-in-1 system), i.e., dose-dependent antioxidant, cytotoxic, and genotoxic activity. The results suggested that synthesized AuNPs can be used for various biological applications and can be effectively employed as future antioxidant and anticancer agents in the field of biomedicine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cao, G. (2004). Nanostructures and nanomaterials: synthesis, properties, and applications. London: Imperial College Press.

    Google Scholar 

  2. Jensen, T. R., Malinsky, M. D., Haynes, C. L., Duyne, R. P., & Van. (2000). Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. The Journal of Physical Chemistry B, 104, 10549–10556.

    Google Scholar 

  3. Tsuji, T., Kakita, T., & Tsuji, M. (2003). Preparation of nano-size particles of silver with femtosecond laser ablation in water. Applied Surface Science, 206, 314–320.

    Google Scholar 

  4. Sivakumar, M., Venkatakrishnan, K., & Tan, B. (2009). Synthesis of glass nanofibers using femtosecond laser radiation under ambient condition. Nanoscale Research Letters, 9, 1263–1266.

    Google Scholar 

  5. Ahmad T, Wani IA, Ahmed J, Al-Hartomy OA (2014). Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions. Applied Nanoscience 4:491–498.

  6. Kahrilas, G. A., Haggren, W., Read, R. L., Wally, L. M., & Fredrick, S. J. (2014). Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustainable Chemistry & Engineering, 2(4), 590–598.

    Google Scholar 

  7. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638–2650.

    Google Scholar 

  8. Islam, N. U., Khan, I., Rauf, A., Muhammad, N., Shahid, M., & Shah, M. R. (2015). Antinociceptive, muscle relaxant and sedative activities of gold nanoparticles generated by methanolic extract of Euphorbia milii. BMC Complementary and Alternative Medicine, 15(160). https://doi.org/10.1186/s12906-015-0691-7.

  9. Oh, K. H., Soshnikova, V., Markus, J., Kim, Y. J., Lee, S. C., Singh, P., Castro-Aceituno, V., Ahn, S., Kim, D. H., Shim, Y. J., Kim, Y. J., & Yang, D. C. (2018). Biosynthesized gold and silver nanoparticles by aqueous fruit extract of Chaenomeles sinensis and screening of their biomedical activities. Artificial Cells, Nanomedicine, and Biotechnology, 46(3), 599–606.

    Google Scholar 

  10. Singh, P., Pandit, S., Garnæs, J., Tunjic, S., Mokkapati, V. R., Sultan, A., Thygesen, A., Mackevica, A., Mateiu, R. V., Daugaard, A. E., Baun, A., & Ivan, M. (2018). Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. International Journal of Nanomedicine, 13, 3571–3591.

    Google Scholar 

  11. Huo, Y., Singh, P., Kim, Y. J., Soshnikova, V., Kang, J., Markus, J., Ahn, S., Castro-Aceituno, V., Mathiyalagan, R., Chokkalingam, M., Bae, K. S., & Yang, D. K. (2018). Biological synthesis of gold and silver chloride nanoparticles by Glycyrrhiza uralensis and in vitro applications. Artificial Cells, Nanomedicine, and Biotechnology, 46(2), 303–312.

    Google Scholar 

  12. Bogireddy, N. K., Pal, U., Gomez, L. M., & Agarwal, V. (2018). Size controlled green synthesis of gold nanoparticles using Coffea arabica seed extract and their catalytic performance in 4-nitrophenol reduction. RSC Advances, 8(44), 24819–24826.

    Google Scholar 

  13. Nayan, V., Onteru, S. K., & Singh, D. (2018). Mangifera indica flower extract mediated biogenic green gold nanoparticles: efficient nanocatalyst for reduction of 4-nitrophenol. Environmental Progress & Sustainable Energy, 37(1), 283–294.

    Google Scholar 

  14. Wang, L., Xu, J., Yan, Y., Liu, H., & Lia, F. (2019). Synthesis of gold nanoparticles from leaf Panax notoginseng and its anticancer activity in pancreatic cancer PANC-1 cell lines. Artificial Cells, Nanomedicine and Biotechnology, 47, 1216–1223.

    Google Scholar 

  15. Roy, A., & Mohanta, B. (2019). Microwave-assisted green synthesis of gold nanoparticles and its catalytic activity. International Journal of Nano Dimensions, 10(4), 359–367.

    Google Scholar 

  16. Vijayan, R., Joseph, S., & Mathew, B. (2019a). Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess and Biosystems Engineering, 42(2), 305–319.

    Google Scholar 

  17. Vijayan, R., Joseph, S., & Mathew, B. (2019b). Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess and Biosystems Engineering, 42(2), 305–319.

    Google Scholar 

  18. Sharma, B., & Deswal, R. (2018). Single pot synthesized gold nanoparticles using Hippophaerhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications. Artificial Cells, Nanomedicine, and Biotechnology, 46, 408–418.

    Google Scholar 

  19. Sperling, R. A., Gil, P. R., Zhang, F., Zanella, M., & Parak, W. J. (2008). Biological applications of gold nanoparticles. Chemical Society Reviews, 37(9), 1896–1908.

    Google Scholar 

  20. Mitra M, Bandyopadhyay A, Datta G, Nandi DK (2019). Protective role of green synthesized gold nanoparticles using Terminalia arjuna against acetaminophen induced hematological alterations in male Wistar rats. Journal of Nanomedicine and Nanotechnology. https://doi.org/10.35248/2157-7439.19.10.530

  21. Sunderam, V., Thiyagarajan, D., Lawrence, A. V., Mohammed, S. S. S., & Selvaraj, A. (2019a). In vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi Journal of Biological Sciences, 26, 455–459.

    Google Scholar 

  22. Sunderam, V., Thiyagarajan, D., Lawrence, A. V., Mohammed, S. S., & Selvaraj, A. (2019b). In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi Journal of Biological Sciences, 26, 455–459.

    Google Scholar 

  23. Al-Ani LA, Yehye WA, Kadir FA, Hashim NM, Al Saadi MA, Julkapli NM, Hsiao VKS (2019). Hybrid nanocomposite curcumin-capped gold nanoparticle reduced graphene oxide: Antioxidant potency and selective cancer cytotoxicity. PLOS One. https://doi.org/10.1371/journal.pone.0216725.

  24. Ascar, I. F., Al-A'Araji, S. B., & Alshanon, A. F. (2019). Cytotoxicity and antioxidant effect of ginger gold nanoparticles on thyroid carcinoma cells. Journal of Pharmaceutical Sciences and Research, 11(3), 1044–1051.

    Google Scholar 

  25. Murad, U., Barkatullah, K. S. A., Ibrar, M., Ullah, S., & Khattak, U. (2018). Synthesis of silver and gold nanoparticles from leaf of Litchi chinensis and its biological activities. Asian Pacific Journal of Tropical Biomedicine, 8(3), 142–149.

    Google Scholar 

  26. Ahn, E. Y., Hwang, S. J., Choi, M. J., Cho, S., Lee, H. J., & Park, Y. (2018). Upcycling of jellyfish (Nemopilema nomurai) sea wastes as highly valuable reducing agents for green synthesis of gold nanoparticles and their antitumor and anti-inflammatory activity. Artificial Cells, Nanomedicine, and Biotechnology, 46(S2), 1127–1136.

    Google Scholar 

  27. Sundararajan, B., & Kumari, B. R. (2017). Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. Journal of Trace Elements in Medicine and Biology, 43, 187–196.

    Google Scholar 

  28. Ndeh, N. T., Maensiri, S., & Maensiri, D. (2017). The effect of green synthesized gold nanoparticles on rice germination and roots. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8, 035008. https://doi.org/10.1088/2043-6254/aa724a.

    Article  Google Scholar 

  29. Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., & Sarmah, A. K. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Science of the Total Environment, 573, 1089–1102.

    Google Scholar 

  30. Zeng, S., Yong, K. T., Roy, I., Dinh, X. Q., Yu, X., & Luan, F. (2011). A review on functionalized gold nanoparticles for biosensing applications. Plasmonics, 6, 491–506.

    Google Scholar 

  31. Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford: Oxford University Press.

    Google Scholar 

  32. Kosalai, D., & Chandran, M. (2016). Phytochemical analysis and anti-oxidant activity of gold nanoparticles synthesizing plant - Silybum marianum. International Journal of Current Microbiology and Applied Sciences, 5(4), 469–475.

    Google Scholar 

  33. Vijayan, R., Joseph, S., & Mathew, B. (2018). Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnology, 12(6), 850–856.

    Google Scholar 

  34. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. D. V. M. (2015). Global cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 65(2), 87–108.

    Google Scholar 

  35. Pandey J, Chanda S (2020) Screening of anticancer properties of some medicinal plants - mini review. International Journal of Current Microbiology and Applied Science (In Press).

  36. Wang, X., Yang, L., Chen, Z. G., & Shin, D. M. (2008). Application of nanotechnology in cancer therapy and imaging. CA: a Cancer Journal for Clinicians, 58(2), 97–110.

    Google Scholar 

  37. Kapoor, B. B. S., & Arora, V. (2014). Ethno medicinal plants of Jaisalmer District of Rajasthan used in herbal and folk remedies. International Journal of Ethnobiology & Ethnomedicine, 1, 1–6.

    Google Scholar 

  38. Singh, S. (2019). Phytoconstituents of Ziziphus nummularia (Burm. f.) Wight & Arn. leaves extracts using GC-MS spectroscopy. Research & Reviews: A Journal of Life Sciences., 9(1), 109–118.

    Google Scholar 

  39. Padalia, H., & Chanda, S. (2017). Characterization, antifungal and cytotoxic evaluation of green synthesized zinc oxide nanoparticles using Ziziphus nummularia leaf extract. Artificial Cells, Nanomedicine, and Biotechnology, 45(8), 1751–1761.

    Google Scholar 

  40. McCune, L. M., & Johns, T. (2002). Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the indigenous peoples of the North American boreal forest. Journal of Ethnopharmacology, 82(2-3), 197–205.

    Google Scholar 

  41. Robak, J., & Gryglewski, R. J. (1988). Flavonoids are scavengers of superoxide anions. Biochemical Pharmacology, 37(5), 837–841.

    Google Scholar 

  42. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolourization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237.

    Google Scholar 

  43. Athukorala, Y., Kim, K. N., & Jeon, Y. J. (2006). Antiproliferative and antioxidant properties of an enzyme hydrolysate from brown alga, Ecklonia cava. Food and Chemical Toxicology, 44(7), 1065–1074.

    Google Scholar 

  44. Labieniec, M., & Gabryelak, T. (2003). Effects of tannins on Chinese hamster cell line B14. Mutation Research, 539, 127–135.

    Google Scholar 

  45. Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184–191.

    Google Scholar 

  46. Hungerford, D. A. (1965). Leukocytes cultured from small inoculum of whole blood and the preparation of chromosomes by treatment with hypotonic KCI. Stain Technology, 40(6), 333–338.

    Google Scholar 

  47. Simeonova, S., Georgiev, P., Exner, K. S., Mihaylov, L., Nihtianova, D., Koynov, K., & Balashev, K. (2018). Kinetic study of gold nanoparticles synthesized in the presence of chitosan and citric acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 557, 106–115.

    Google Scholar 

  48. Karthik, R., Chen, S. M., Elangovan, A., Muthukrishnan, P., Shanmugam, R., & Lou, B. S. (2016). Phyto mediated biogenic synthesis of gold nanoparticles using Cerasus serrulata and its utility in detecting hydrazine, microbial activity and DFT studies. Journal of Colloid and Interface Science, 468, 163–175.

    Google Scholar 

  49. Katas, H., Lim, C. S., Azlan, A. Y. H. N., Buang, F., & Busra, M. F. M. (2019). Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharmaceutical Journal., 27, 283–292.

    Google Scholar 

  50. Hamelian, M., Varmira, K., & Veisi, H. (2018). Green synthesis and characterizations of gold nanoparticles using Thyme and survey cytotoxic effect, antibacterial and antioxidant potential. Journal of Photochemistry and Photobiology B: Biology, 184, 71–79.

    Google Scholar 

  51. Dhamecha, D., Jalalpure, S., & Jadhav, K. (2016). Nepenthes khasiana mediated synthesis of stabilized gold nanoparticles: characterization and biocompatibility studies. Journal of Photochemistry and Photobiology B: Biology, 154, 108–117.

    Google Scholar 

  52. Shabestarian, H., Homayouni-Tabrizi, M., Soltani, M., Namvar, F., Azizi, S., Mohamad, R., & Shabestarian, H. (2016). Green synthesis of gold nanoparticles using Sumac aqueous extract and their antioxidant activity. Materials Research, 20(1), 264–270.

    Google Scholar 

  53. Tahir, K., Nazir, S., Li, B., Khan, A. U., Khan, Z. U., Gong, P. Y., Khan, S. U., & Ahmad, A. (2015). Nerium oleander leaves extract mediated synthesis of gold nanoparticles and its antioxidant activity. Materials Letters, 156, 198–201.

    Google Scholar 

  54. Sathishkumar, G., Jha, P. K., Vignesh, V., et al. (2016). Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. Journal of Molecular Liquids, 215, 229–236.

    Google Scholar 

  55. Khan, S., Bakht, J., & Syed, F. (2018). Green synthesis of gold nanoparticles using Acer pentapomicum leaves extract its characterization, antibacterial, antifungal and antioxidant bioassay. Digest Journal of Nanomaterials and Biostructures, 2(13), 579–589.

    Google Scholar 

  56. Ramamurthy, C. H., Padma, M., Samadanam, I. D. M., Mareeswaran, R., Suyavaran, A., Kumar, M. S., Premkumar, K., & Thirunavukkarasu, C. (2013). The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids and Surfaces B: Biointerfaces, 102, 808–815.

    Google Scholar 

  57. Patra, J. K., & Baek, K. H. (2015). Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. International Journal of Nanomedicine, 10, 7253–7264.

    Google Scholar 

  58. Ghosh, S., Patil, S., Chopade, N. B., Luikham, S., Kitture, R., Gurav, D. D., Patil, A. B., Phadatare, S. D., Sontakke, V., Kale, S., Shinde, V., Bellare, J., & Chopade, B. A. (2016). Gnidia glauca leaf and stem extract mediated synthesis of gold nanocatalysts with free radical scavenging potential. Journal of Nanomedicine & Nanotechnology, 7(358), 2. https://doi.org/10.4172/2157-7439.1000358.

    Article  Google Scholar 

  59. Rajamanikandan, S., Sindhu, T., Durgapriya, D., Sophia, D., Ragavendran, P., & Gopalakrishnan, V. K. (2011). Radical scavenging and antioxidant activity of ethanolic extract of Mollugo nudicaulis by in vitro assays. Indian Journal of Pharmaceutical Education and Research, 45(4), 310–316.

    Google Scholar 

  60. Sowndhararajan, K., Joseph, J. M., & Manian, S. (2013). Antioxidant and free radical scavenging activities of Indian Acacias: Acacia leucophloea (Roxb.) Willd., Acacia ferruginea DC., Acacia dealbata Link. and Acacia pennata (L.) Willd. International Journal of Food Properties, 16(8), 1717–1729.

    Google Scholar 

  61. Patra, J. K., Kwon, Y., & Baek, K. H. (2016). Green biosynthesis of gold nanoparticles by onion peel extract: synthesis, characterization and biological activities. Advanced Powder Technology, 27(5), 2204–2213.

    Google Scholar 

  62. Ismail, E. H., Saqer, A., Assirey, E., Naqvi, A., & Okasha, R. M. (2018). Successful green synthesis of gold nanoparticles using a Corchorus olitorius extract and their antiproliferative effect in cancer cells. International Journal of Molecular Sciences, 19(9), 2612. https://doi.org/10.3390/ijms19092612.

    Article  Google Scholar 

  63. Ramkumar, R., Balasubramani, G., Raja, R. K., Raja, M., Govindan, R., Girija, E. K., & Perumal, P. (2017). Lantana camara Linn. root extract-mediated gold nanoparticles and their in vitro antioxidant and cytotoxic potentials. Artificial Cells, Nanomedicine, and Biotechnology., 45(4), 748–757.

    Google Scholar 

  64. Barai, A. C., Paul, K., Dey, A., Manna, S., Roy, S., Bag, B. G., & Mukhopadhyay, C. (2018). Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Convergence, 5(10). https://doi.org/10.1186/s40580-018-0142-5.

  65. Oueslati, M. H., Tahar, L. B., & Harrath, A. H. (2018). Catalytic, antioxidant and anticancer activities of gold nanoparticles synthesized by kaempferol glucoside from Lotus leguminosae. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2018.09.003.

  66. Abo-Zeid, M. A. M., Liehr, T., Glei, M., Gamal-Eldeen, A. M., Zawrah, M., & Ali, M. (2015). Detection of cyto- and genotoxicity of rod-shaped gold nanoparticles in human blood lymphocytes using comet-FISH. Cytologia, 80(2), 173–181.

    Google Scholar 

  67. Konen-Adıguzel, S., Adıguzel, A. O., Ay, H., Alpdogan, S., Sahin, N., Caputcu, A., Ergene, R. S., Gubur, H. M., & Tuncer, M. (2018). Genotoxic, cytotoxic, antimicrobial and antioxidant properties of gold nanoparticles synthesized by Nocardia sp. GTS18 using response surface methodology. Materials Research Express, 5, 115402. https://doi.org/10.1088/2053-1591/aadcc4.

    Article  Google Scholar 

  68. Moteriya, P., & Chanda, S. (2017). Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artificial Cells, Nanomedicine, and Biotechnology., 45(8), 1556–1567.

    Google Scholar 

  69. Saha, N., & Gupta, S. D. (2017). Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. Journal of Hazardous Materials, 330, 18–28.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Biosciences (UGC-CAS) for providing excellent research facilities.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumitra Chanda.

Ethics declarations

Research Involving Humans and Animals Statement

This manuscript does not contain research involving humans and animals.

Informed Consent

None

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Green synthesis of AuNPs by Ziziphus nummularia leaf extract

• Characterized was done by UV-Vis spectroscopy, FTIR, TGA, XRD, and TEM analysis.

• AuNPs were 11–12 nm in size and spherical in shape.

• Dose-dependent antioxidant activity against DPPH, SO, and ABTS radicals

• AuNPs showed significant cytotoxic effect and no genotoxic effect at low concentration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padalia, H., Chanda, S. Antioxidant and Anticancer Activities of Gold Nanoparticles Synthesized Using Aqueous Leaf Extract of Ziziphus nummularia. BioNanoSci. 11, 281–294 (2021). https://doi.org/10.1007/s12668-021-00849-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00849-y

Keywords

Navigation