Skip to main content
Log in

Antibacterial Studies of ZnO and Cu-Doped ZnO Nanoparticles Synthesized Using Aqueous Leaf Extract of Stachytarpheta jamaicensis

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) and Cu-doped ZnO nanoparticles (1% and 5%; Cu-doped ZnO NPs) were synthesized using aqueous leaf extract of Stachytarpheta jamaicensis. Crystalline ZnO and Cu-doped ZnO NPs with hexagonal wurtzite structure were obtained without any impurities as confirmed by powder X-ray diffraction. The optical properties, morphology, elemental composition, and surface analysis of all the samples were studied using UV-vis diffuse reflectance spectroscopy, scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDX), and X-ray photoelectron spectroscopy, respectively. Antibacterial activities of the ZnO and Cu-doped ZnO were performed by screening test at the highest concentration (500 mg/mL) against two gram-positive bacterial strains (Bacillus subtilis and Staphylococcus aureus) and two gram-negative bacterial strains (Pseudomonas aeruginosa and Escherichia coli). Antibacterial activities were observed only against gram-positive bacteria. Minimum inhibitory concentration (MIC) ranged from < 25 to 50 mg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ansari, S. A., Khan, M. M., Kalathil, S., Nisar, A., Lee, J., & Cho, M. H. (2013). Oxygen vacancy induced band gap narrowing of ZnO nanostructure by electrochemically active biofilm. Nanoscale, 5, 9238–9246. https://doi.org/10.1039/c3nr02678g.

    Article  Google Scholar 

  2. Kennedy, J., Murmu, P. P., Manikandan, E., & Lee, S. Y. (2014). Investigation of structural and photoluminescence properties of gas and metal ions doped zinc oxide single crystals. Journal of Alloys and Compounds, 616, 614–617. https://doi.org/10.1016/j.jallcom.2014.07.179.

    Article  Google Scholar 

  3. Khan, M. M., Saadah, N. H., Khan, M. E., Harunsani, M. H., Tan, A. L., & Cho, M. H. (2019). Phytogenic synthesis of band gap-narrowed ZnO nanoparticles using the bulb extract of Costus woodsonii. Bionanoscience, 9, 334–344. https://doi.org/10.1007/s12668-019-00616-0.

    Article  Google Scholar 

  4. Khan, M. M., Saadah, N. H., Khan, M. E., Harunsani, M. H., Tan, A. L., & Cho, M. H. (2019). Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Materials Science in Semiconductor Processing, 91, 194–200. https://doi.org/10.1016/j.mssp.2018.11.030.

    Article  Google Scholar 

  5. Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44 https://www.ncbi.nlm.nih.gov/pubmed/24772325.

    Article  Google Scholar 

  6. Yuvakkumar, R., Suresh, J., & Hong, S. I. (2014). Green synthesis of zinc oxide nanoparticles. Advances in Materials Research, 952, 137–140. https://doi.org/10.4028/www.scientific.net/AMR.952.137.

    Article  Google Scholar 

  7. Gunalan, S., Sivaraj, R., & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22, 693–700. https://doi.org/10.1016/j.pnsc.2012.11.015.

    Article  Google Scholar 

  8. Happy, A., Menon, S., Venkat Kumar, S., & Rajeshkumar, S. (2018). Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 286, 60–70. https://doi.org/10.1016/j.cbi.2018.03.008.

    Article  Google Scholar 

  9. Černík, M., Thekkae Padil, V.V. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application, International Journal of Nanomedicine 889. doi:https://doi.org/10.2147/IJN.S40599.

  10. Ajitha, B., Kumar Reddy, Y. A., Reddy, P. S., Jeon, H. J., & Ahn, C. W. (2016). Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Advances, 6, 36171–36179. https://doi.org/10.1039/c6ra03766f.

    Article  Google Scholar 

  11. Liew, P.M., Yong, Y.K. (2016). Stachytarpheta jamaicensis (L.) Vahl: from traditional usage to pharmacological evidence, evidence-based complement. Evidence-Based Complementary and Alternative Medicine 2016. doi:https://doi.org/10.1155/2016/7842340.

  12. Ezenwa, K. C., Ighodaro, I., & Macdonald, I. (2015). Antidiabetic activity of methanol extract of stachytarpheta jamaicensis in streptozotocin-induced diabetic rats. Nigerian Journal of Pharmaceutical Sciences, 14, 9–18.

    Google Scholar 

  13. Pandian, C., Srinivasan, A., & Pelapolu, I. C. (2013). Evaluation of wound healing activity of hydroalcoholic extract of leaves of Stachytarpheta jamaicensis in streptozotocin induced diabetic rats. Der Pharmacia Lettre., 5, 193–200.

    Google Scholar 

  14. Putera, K.A.S.I., Hamdan, S., Dan Biokejuruteraan, F.B. (2010). Antimicrobial activity and cytotoxic effects of Stachytarpheta jamaicensis (L), Vahl Crude Plant Extracts, Universiti Teknologi Malaysia. https://books.google.com.bn/books?id=7j9nnQAACAAJ.

  15. Murugan, M., Murugan, T., & Wins, J. A. (2013). Antimicrobial activity and phytochemical constituents of leaf extracts of Cassia auriculata. Indian Journal of Pharmaceutical Sciences, 75, 122. https://doi.org/10.4103/0250-474X.113546.

    Article  Google Scholar 

  16. Mitchell, G. J., Wiesenfeld, K., Nelson, D. C., & Weitz, J. S. (2013). Critical cell wall hole size for lysis in gram-positive bacteria. Journal of The Royal Society Interface, 10, 20120892. https://doi.org/10.1098/rsif.2012.0892.

    Article  Google Scholar 

  17. Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278–284. https://doi.org/10.1016/j.msec.2014.08.031.

    Article  Google Scholar 

  18. Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2, a000414. https://doi.org/10.1101/cshperspect.a000414.

    Article  Google Scholar 

  19. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32, 751–767. https://doi.org/10.1107/S0567739476001551.

    Article  Google Scholar 

  20. Banu Bahşi, Z., & Oral, A. Y. (2007). Effects of Mn and Cu doping on the microstructures and optical properties of sol-gel derived ZnO thin films. Optical Materials, 29, 672–678. https://doi.org/10.1016/j.optmat.2005.11.016.

    Article  Google Scholar 

  21. Robak, E., Coy, E., Kotkowiak, M., Jurga, S., Załęski, K., & Drozdowski, H. (2016). The effect of Cu doping on the mechanical and optical properties of zinc oxide nanowires synthesized by hydrothermal route. Nanotechnology, 27, 175706. https://doi.org/10.1088/0957-4484/27/17/175706.

    Article  Google Scholar 

  22. Herng, T. S., Lau, S. P., Yu, S. F., Yang, H. Y., Wang, L., Tanemura, M., & Chen, J. S. (2007). Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Applied Physics Letters, 90, 032509. https://doi.org/10.1063/1.2433028.

    Article  Google Scholar 

  23. Yugandhar, P., Vasavi, T., Uma Maheswari Devi, P., & Savithramma, N. (2017). Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Applied Nanoscience, 7, 417–427. https://doi.org/10.1007/s13204-017-0584-9.

    Article  Google Scholar 

  24. Shanmugam, V., & Jeyaperumal, K. S. (2018). Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity. Applied Surface Science, 449, 617–630. https://doi.org/10.1016/j.apsusc.2017.11.167.

    Article  Google Scholar 

  25. Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493.

    Article  Google Scholar 

  26. Gumustas, M., Sengel-Turk, C.T., Gumustas, A., Ozkan, S.A., Uslu, B. (2017). Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems, in: Multifunct. Syst. Comb. Deliv. Biosensing Diagnostics, Elsevier: pp. 67–108. doi:https://doi.org/10.1016/B978-0-323-52725-5.00005-8.

  27. Ren, G., Hu, D., Cheng, E. W., Vargas-Reus, M. A., Reip, P., & Allaker, R. P. (2009). Characterisation of copper oxide NPs for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587–590. https://doi.org/10.1016/j.ijantimicag.2008.12.004.

    Article  Google Scholar 

  28. Oves, M., Arshad, M., Khan, M. S., Ahmed, A. S., Azam, A., & Ismail, I. M. I. (2015). Anti-microbial activity of cobalt doped zinc oxide nanoparticles: Targeting water borne bacteria. Journal of Saudi Chemical Society, 19(5), 581–588. https://doi.org/10.1016/j.jscs.2015.05.003.

    Article  Google Scholar 

  29. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249. https://doi.org/10.2147/IJN.S121956.

    Article  Google Scholar 

  30. Khan, M. M., Harunsani, M. H., Tan, A. L., Hojamberdiev, M., Azamay, S., & Ahmad, N. (2020). Antibacterial activities of zinc oxide and Mn-doped zinc oxide synthesized using Melastoma malabathricum (L.) leaf extract. Bioprocess and Biosystems Engineering, 43(8), 1499–1508. https://doi.org/10.1007/s00449-020-02343-3.

    Article  Google Scholar 

  31. Shaikh, S., Nazam, N., Rizvi, S. M. D., Ahmad, K., Baig, M. H., Lee, E. J., & Choi, I. (2019). Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. International Journal of Molecular Sciences, 20(10), 2468. https://doi.org/10.3390/ijms20102468.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the FIC grant UBD/RSCH/1.4/FICBF(b)/2018/012 from Universiti Brunei Darussalam, Brunei Darussalam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mansoob Khan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.M., Harunsani, M.H., Tan, A.L. et al. Antibacterial Studies of ZnO and Cu-Doped ZnO Nanoparticles Synthesized Using Aqueous Leaf Extract of Stachytarpheta jamaicensis. BioNanoSci. 10, 1037–1048 (2020). https://doi.org/10.1007/s12668-020-00775-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00775-5

Keywords

Navigation