Skip to main content

Advertisement

Log in

Synthesis and Apoptotic Efficacy of Biosynthesized Silver Nanoparticles Using Acacia luciana Flower Extract in MCF-7 Breast Cancer Cells: Activation of Bak1 and Bclx for Cancer Therapy

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Due to unique properties of green silver nanoparticles, especially chemical and biological properties, they are one of the most used metallic nanoparticles in modern healthcare applications. Accordingly, we synthesized Ag-NPs using Acacia luciana as a reducing and stabilizing agent, to elucidate its apoptosis inducing ability in MCF-7 cancer cells. The Ag-NPs were characterized using FTIR and FESEM. These instruments confirmed that biosynthesized nanoparticles are rod-shaped with average size of 50 nm and negative surface charge of 2.59 mV. The in vitro anticancer effects using MTT assay revealed that the Ag-NPs showed inhibition of cell survival in a time and dose-dependent manner with IC50 value of 4.37 mg/mL. Also, the expression of pro- and antiapoptotic genes was measured using real-time PCR. The results hinted that Ag-NPs can significantly increase the Bak1/Bclx ratios through the change in mitochondrial membrane permeability and be used as a therapeutic agent breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Remya, R., Rajasree, S. R., Aranganathan, L., & Suman, T. (2015). An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnology Reports, 8, 110–115. https://doi.org/10.1016/j.btre.2015.10.004.

  2. Jang, S. J., Yang, I. J., Tettey, C. O., Kim, K. M., & Shin, H. M. (2016). In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Materials Science Engineering: C, 68, 430–435. https://doi.org/10.1016/j.msec.2016.03.101.

  3. Vanaja, M., Paulkumar, K., Baburaja, M., Rajeshkumar, S., Gnanajobitha, G., Malarkodi, C., Sivakavinesan, M., & Annadurai, G. (2014). Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorganic Chemistry Applications, 2014. https://doi.org/10.1155/2014/742346.

  4. Singh, J., & Dhaliwal, A. S. (2019). Novel green synthesis and characterization of the antioxidant activity of silver nanoparticles prepared from Nepeta leucophylla root extract. Analytical Letters, 52(2), 213–230. https://doi.org/10.1080/00032719.2018.1454936.

  5. Igaz, N., Kovács, D., Rázga, Z., Kónya, Z., Boros, I. M., & Kiricsi, M. (2016). Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles. Colloids Surfaces B: Biointerfaces, 146, 670–677. https://doi.org/10.1016/j.colsurfb.2016.07.004.

  6. Sardashti, A. R., Valizadeh, J., & Majd, M. H. (2015). Chemical constituents of the flower oil of Acacia luciana from Iran. International Journal of Agriculture Crop Sciences, 8(3), 395.

  7. Alarifi, S., Ali, H., & Saad Alkahtani, M. S. A. (2017). Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide. International Journal of Nanomedicine, 12, 4541.

  8. Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha, A., & Lin, M. (2018). Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surfaces B: Biointerfaces, 171, 398–405.

  9. Sargazi, A., Kamali, N., Shiri, F., & Heidari Majd, M. (2018). Hyaluronic acid/polyethylene glycol nanoparticles for controlled delivery of mitoxantrone. Artificial Cells, Nanomedicine and Biotechnology, 46(3), 500–509. https://doi.org/10.1080/21691401.2017.1324462.

    Article  Google Scholar 

  10. Shahraki, S., Shiri, F., Majd, M. H., & Razmara, Z. (2017). Comparative study on the anticancer activities and binding properties of a hetero metal binuclear complex [co(dipic)2Ni(OH2)5]·2H2O (dipic = dipicolinate) with two carrier proteins. Journal of Pharmaceutical and Biomedical Analysis, 145, 273–282. https://doi.org/10.1016/j.jpba.2017.06.067.

    Article  Google Scholar 

  11. Shahraki, S., Majd, M. H., & Heydari, A. (2019). Novel tetradentate Schiff base zinc(II) complex as a potential antioxidant and cancer chemotherapeutic agent: Insights from the photophysical and computational approach. Journal of Molecular Structure, 1177, 536–544. https://doi.org/10.1016/j.molstruc.2018.10.005.

    Article  Google Scholar 

  12. Mansouri-Torshizi, H., Zareian-Jahromi, S., Ghahghaei, A., Shahraki, S., Khosravi, F., & Heidari Majd, M. (2018). Palladium(II) complexes of biorelevant ligands. Synthesis, structures, cytotoxicity and rich DNA/HSA interaction studies. Journal of Biomolecular Structure and Dynamics, 36(11), 2787–2806. https://doi.org/10.1080/07391102.2017.1372309.

    Article  Google Scholar 

  13. Barar, J., Kafil, V., Majd, M. H., Barzegari, A., Khani, S., Johari-Ahar, M., Asgari, D., Cokous, G., & Omidi, Y. (2015). Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells. Journal of Nanobiotechnology, 13(1). https://doi.org/10.1186/s12951-015-0083-7.

  14. Khan, M., Khan M., Al-Marri, A. H., Al-Warthan, A., Alkhathlan, H. Z., Siddiqui, M. R. H., Nayak, V. L., Kamal, A., & Adil, S. F. (2016). Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer. International Journal of Nanomedicine, 11, 873.

  15. Yuan, Y.-G., & Gurunathan, S. (2017). Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. International Journal of Nanomedicine, 12, 6537. https://doi.org/10.2147/IJN.S125281.

  16. Yuan, Y.-G., Zhang, S., Hwang, J.-Y., & Kong, I.-K. (2018). Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxidative Medicine Cellular Longevity, 2018. https://doi.org/10.1155/2018/6121328.

  17. Murugan, K., Senthilkumar, B., Senbagam, D., & Al-Sohaibani, S. (2014). Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. International Journal of Nanomedicine, 9, 2431. https://doi.org/10.2147/IJN.S61779.

  18. Ahmad, A., Syed, F., Shah, A., Khan, Z., Tahir, K., Khan, A. U., & Yuan, Q. (2015). Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Advanced, 5(90), 73793–73806. https://doi.org/10.1039/C5RA13206A.

  19. Ramgopal, M., Saisushma, C., Attitalla, I. H., & Alhasin, A. M. (2011). A facile green synthesis of silver nanoparticles using soap nuts. Research Journal of Microbiology, 6(5), 432–438. https://doi.org/10.3923/jm.2011.432.438.

  20. Sargazi, A., Shiri, F., Keikha, S., & Majd, M. H. (2018). Hyaluronan magnetic nanoparticle for mitoxantrone delivery toward CD44-positive cancer cells. Colloids and Surfaces B: Biointerfaces, 171, 150–158. https://doi.org/10.1016/j.colsurfb.2018.07.025.

    Article  Google Scholar 

  21. Verma, P., & Maheshwari, S. K. (2019). Applications of silver nanoparticles in diverse sectors. International Journal of Nano Dimension, 10(1), 18–36.

  22. Veronesi, G., Deniaud, A., Gallon, T., Jouneau, P.-H., Villanova, J., Delangle, P., Carrière, M., Kieffer, I., Charbonnier, P., & Mintz, E. (2016). Visualization, quantification and coordination of Ag+ ions released from silver nanoparticles in hepatocytes. Nanoscale, 8(38), 17012–17021. https://doi.org/10.1039/C6NR04381J.

  23. Mfouo-Tynga, I., El-Hussein, A., Abdel-Harith, M., & Abrahamse, H. (2014). Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines. International Journal of Nanomedicine, 9(1), 3771–3780.

  24. Nayak, D., Ashe, S., Rauta, P. R., Kumari, M., & Nayak, B. (2016). Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science Engineering: C, 58, 44–52. https://doi.org/10.1016/j.msec.2015.08.022.

  25. Chanthini, A. B., Balasubramani, G., Ramkumar, R., Sowmiya, R., Balakumaran, M. D., Kalaichelvan, P. T., & Perumal, P. (2015). Structural characterization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R. Br.) Asch. & Magnus mediated silver nanoparticles. Journal of Photochemistry Photobiology B: Biology, 153, 145–152. https://doi.org/10.1016/j.jphotobiol.2015.09.014.

  26. Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., & Mozafari, M. (2018). Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 8013. https://doi.org/10.2147/IJN.S189295.

  27. Foldbjerg, R., Dang, D. A., & Autrup, H. (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology, 85(7), 743–750. https://doi.org/10.1007/s00204-010-0545-5.

  28. Akter, M., Sikder, M. T., Rahman, M. M., Ullah, A. A., Hossain, K. F. B., Banik, S., Hosokawa, T., Saito, T., & Kurasaki, M. (2018). A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. Journal of Advanced Research, 9, 1–16. https://doi.org/10.1016/j.jare.2017.10.008.

  29. Venugopal, K., Ahmad, H., Manikandan, E., Arul, K. T., Kavitha, K., Moodley, M., Rajagopal, K., Balabhaskar, R., & Bhaskar, M. (2017). The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines. Journal of Photochemistry Photobiology B: Biology, 173, 99–107. https://doi.org/10.1016/j.jphotobiol.2017.05.031.

  30. Susnow, N., Zeng, L., Margineantu, D., & Hockenbery, D. M. (2009). Bcl-2 family proteins as regulators of oxidative stress. In Seminars in cancer biology (Vol. 1, pp. 42–49). Elsevier.

  31. Bauer, C., Hees, C., Sterzik, A., Bauernfeind, F., Mak’Anyengo, R., Duewell, P., Lehr, H.-A., Noessner, E., Wank, R., & Trauzold, A. (2015). Proapoptotic and antiapoptotic proteins of the Bcl-2 family regulate sensitivity of pancreatic cancer cells toward gemcitabine and T-cell–mediated cytotoxicity. Journal of Immunotherapy, 38(3), 116–126. https://doi.org/10.1097/CJI.0000000000000073.

  32. Yuan, Y.-G., Peng, Q.-L., & Gurunathan, S. (2017). Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. International Journal of Nanomedicine, 12, 6487. https://doi.org/10.2147/IJN.S135482.

Download references

Acknowledgments

The authors thank the Deputy of Research and Technology of Zabol University of Medical Sciences for all support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Heidari Majd.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargazi, A., Barani, A. & Heidari Majd, M. Synthesis and Apoptotic Efficacy of Biosynthesized Silver Nanoparticles Using Acacia luciana Flower Extract in MCF-7 Breast Cancer Cells: Activation of Bak1 and Bclx for Cancer Therapy. BioNanoSci. 10, 683–689 (2020). https://doi.org/10.1007/s12668-020-00753-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00753-x

Keywords

Navigation