Synthesis and Characterization of Arsenic(III) Oxide Nanoparticles as Potent Inhibitors of MCF 7 Cell Proliferation through Proapoptotic Mechanism

Abstract

Recent advances in the nanosciences have revolutionized the diagnosis and treatment of diseases like cancers. Arsenic(III) trioxide, best known as a toxic agent, is routinely used in treating different types of leukemia. Besides its application as a chemotherapeutic drug for treating acute promyelocytic leukemia, several attempts have been made to use arsenic trioxide (ATO) against solid tumors. This is however, restricted because of the rapid renal clearance and dose-associated side effects of ATO. This work aims to address these limitations of ATO in chemotherapy by synthesizing biocompatible human serum albumin coated arsenic trioxide nanoparticles (HSA-ATONPs) by an alkaline hydrothermal process, taking sodium arsenate as a precursor. Compared with bulk ATO, these are found to have better cytotoxicity as indicated by an in vitro study with the cancer cell line MCF7. As envisaged by transmission electron microscopy, canonical signs of apoptosis were observed in the MCF 7 cells treated with HSA-ATONPs, confirmed by Annexin V-FITC staining. The study thus, reports an augmentation of the chemotherapeutic potential of arsenic trioxide in its nanoparticulate form with its surface functionalization of human serum albumin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Lång, E., Grudic, A., Pankiv, S., Bruserud, Ø., Simonsen, A., Bjerkvig, R., Bjørås, M., & Bøe, S. O. (2012). The arsenic-based cure of acute promyelocytic leukemia promotes cytoplasmic sequestration of PML and PML/RARA through inhibition of PML body recycling. Blood, 120(4), 847–857.

    Google Scholar 

  2. 2.

    Waite, C. L., & Roth, C. M. (2012). Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Critical Reviews in Biomedical Engineering, 40(1).

  3. 3.

    Lockie, A., & Geddes, N. (1995). The complete guide to homeopathy. New York.

  4. 4.

    Liu, L., Zhang, Y., Yun, Z., He, B., Zhang, Q., Hu, L., & Jiang, G. (2018). Speciation and bioaccessibility of arsenic in traditional Chinese medicines and assessment of its potential health risk. The Science of the Total Environment, 619, 1088–1097.

    Google Scholar 

  5. 5.

    Wang, S., Wu, X., Tan, M., Gong, J., Tan, W., Bian, B., Chen, M., & Wang, Y. (2012). Fighting fire with fire: poisonous Chinese herbal medicine for cancer therapy. Journal of Ethnopharmacology, 140(1), 33–45.

    Google Scholar 

  6. 6.

    Hussein, M. A. (2003). Trials of arsenic trioxide in multiple myeloma. Cancer Control, 10(5), 370–374.

    MathSciNet  Google Scholar 

  7. 7.

    Murgo, A. J. (2001). Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute Cooperative Research and Development Studies. Oncologist, 6(Supplement 2), 22–28.

    Google Scholar 

  8. 8.

    Berenson, J. R., & Yeh, H. S. (2006). Arsenic compounds in the treatment of multiple myeloma: a new role for a historical remedy. Clinical Lymphoma & Myeloma, 7(3), 192–198.

    Google Scholar 

  9. 9.

    Kchour, G., Tarhini, M., Kooshyar, M.-M., El Hajj, H., Wattel, E., Mahmoudi, M., Hatoum, H., Rahimi, H., Maleki, M., & Rafatpanah, H. (2009). Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood, 113(26), 6528–6532.

    Google Scholar 

  10. 10.

    Fu, X., Luo, R.-G., Qiu, W., Ouyang, L., Fan, G.-Q., Liang, Q.-R., & Tang, Q. (2019). Sustained release of arsenic trioxide benefits interventional therapy on rabbit VX2 liver tumor. Nanomedicine 102118.

  11. 11.

    Zhang, J., & Wang, B. (2006). Arsenic trioxide (As 2 O 3) inhibits peritoneal invasion of ovarian carcinoma cells in vitro and in vivo. Gynecologic Oncology, 103(1), 199–206.

    Google Scholar 

  12. 12.

    Yu, J., Qian, H., Li, Y., Wang, Y., Zhang, X., Liang, X., Fu, M., & Lin, C. (2007). Arsenic trioxide (As 2 O 3) reduces the invasive and metastatic properties of cervical cancer cells in vitro and in vivo. Gynecologic Oncology, 106(2), 400–406.

    Google Scholar 

  13. 13.

    Subbarayan, P. R., & Ardalan, B. (2014). In the war against solid tumors arsenic trioxide need partners. Journal of Gastrointestinal Cancer, 45(3), 363–371.

    Google Scholar 

  14. 14.

    Evens, A. M., Tallman, M. S., & Gartenhaus, R. B. (2004). The potential of arsenic trioxide in the treatment of malignant disease: past, present, and future. Leukemia Research, 28(9), 891–900.

    Google Scholar 

  15. 15.

    Bael, T. E., Peterson, B. L., & Gollob, J. A. (2008). Phase II trial of arsenic trioxide and ascorbic acid with temozolomide in patients with metastatic melanoma with or without central nervous system metastases. Melanoma Research, 18(2), 147–151.

    Google Scholar 

  16. 16.

    Ahn, R. W., Barrett, S. L., Raja, M. R., Jozefik, J. K., Spaho, L., Chen, H., Bally, M. B., Mazar, A. P., Avram, M. J., & Winter, J. N. (2013). Nano-encapsulation of arsenic trioxide enhances efficacy against murine lymphoma model while minimizing its impact on ovarian reserve in vitro and in vivo. PLoS One, 8(3), e58491.

    Google Scholar 

  17. 17.

    Chi, X., Yin, Z., Jin, J., Li, H., Zhou, J., Zhao, Z., Zhang, S., Zhao, W., Xie, C., & Li, J. (2017). Arsenite-loaded nanoparticles inhibit the invasion and metastasis of a hepatocellular carcinoma: in vitro and in vivo study. Nanotechnology, 28(44), 445101.

    Google Scholar 

  18. 18.

    Bae, K. H., Chung, H. J., & Park, T. G. (2011). Nanomaterials for cancer therapy and imaging. Molecular Cell, 31(4), 295–302. https://doi.org/10.1007/s10059-011-0051-5.

    Article  Google Scholar 

  19. 19.

    Hong, Y., & Rao, Y. (2019). Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomedicine & Pharmacotherapy, 114, 108764.

    Google Scholar 

  20. 20.

    Dutta, C., & Choudhury, J. (2018). C–H activation-annulation on the N-heterocyclic carbene platform. RSC Advances, 8(49), 27881–27891.

    Google Scholar 

  21. 21.

    Ahmadzadeh, S., Rezayi, M., Kassim, A., & Aghasi, M. (2015). Cesium selective polymeric membrane sensor based on p-isopropylcalix [6] arene and its application in environmental samples. RSC Advances, 5(49), 39209–39217.

    Google Scholar 

  22. 22.

    Ahmadzadeh S, Karimi F, Atar N, Sartori ER, Faghih-Mirzaei E, Afsharmanesh E (2017) Synthesis of CdO nanoparticles using direct chemical precipitation method: fabrication of novel voltammetric sensor for square wave voltammetry determination of chlorpromazine in pharmaceutical samples. Inorganic and Nano-Metal Chemistry 47 (3):347–353.

  23. 23.

    Ahmadzadeh, S., Asadipour, A., Yoosefian, M., & Dolatabadi, M. (2017). Improved electrocoagulation process using chitosan for efficient removal of cefazolin antibiotic from hospital wastewater through sweep flocculation and adsorption: kinetic and isotherm study. Desalination and Water Treatment, 92, 160–171.

    Google Scholar 

  24. 24.

    Ahmadzadeh, S., Kassim, A., Rezayi, M., Abdollahi, Y., & Hossein, G. (2011). A conductometric study of complexation reaction between meso-octamethylcalix [4] pyrrole with titanium cation in acetonitrile-ethanol binary mixtures. International Journal of Electrochemical Science, 6, 4749–4759.

    Google Scholar 

  25. 25.

    Ahmadzadeh, S., Rezayi, M., Faghih-Mirzaei, E., Yoosefian, M., & Kassim, A. (2015). Highly selective detection of titanium (III) in industrial waste water samples using meso-octamethylcalix [4] pyrrole-doped PVC membrane ion-selective electrode. Electrochimica Acta, 178, 580–589.

    Google Scholar 

  26. 26.

    Ahmadzadeh, S., Rezayi, M., Karimi-Maleh, H., & Alias, Y. (2015). Conductometric measurements of complexation study between 4-Isopropylcalix [4] arene and Cr3+ cation in THF–DMSO binary solvents. Measurement, 70, 214–224.

    Google Scholar 

  27. 27.

    Ahmadzadeh, S., & Dolatabadi, M. (2018). Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole. Chemosphere, 212, 533–539.

    Google Scholar 

  28. 28.

    Ahmadzadeh, S., & Dolatabadi, M. (2018). Modeling and kinetics study of electrochemical peroxidation process for mineralization of bisphenol A; a new paradigm for groundwater treatment. Journal of Molecular Liquids, 254, 76–82.

    Google Scholar 

  29. 29.

    Ahmadzadeh, S., & Dolatabadi, M. (2018). In situ generation of hydroxyl radical for efficient degradation of 2, 4-dichlorophenol from aqueous solutions. Environmental Monitoring and Assessment, 190(6), 340.

    Google Scholar 

  30. 30.

    Ahmadzadeh, S., & Dolatabadi, M. (2018). Removal of acetaminophen from hospital wastewater using electro-Fenton process. Environment and Earth Science, 77(2), 53.

    Google Scholar 

  31. 31.

    Abdollahi, Y., Abdullah, A. H., Gaya, U. I., Ahmadzadeh, S., Zakaria, A., Shameli, K., Zainal, Z., Jahangirian, H., & Yusof, N. A. (2012). Photocatalytic degradation of 1, 4-benzoquinone in aqueous ZnO dispersions. Journal of the Brazilian Chemical Society, 23(2), 236–240.

    Google Scholar 

  32. 32.

    Jadhav, V., Ray, P., Sachdeva, G., & Bhatt, P. (2016). Biocompatible arsenic trioxide nanoparticles induce cell cycle arrest by p21WAF1/CIP1 expression via epigenetic remodeling in LNCaP and PC3 cell lines. Life Sciences, 148, 41–52.

    Google Scholar 

  33. 33.

    Chakraborty, B., Pal, R., Ali, M., Singh, L. M., Rahman, D. S., Ghosh, S. K., & Sengupta, M. (2016). Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma. Cellular & Molecular Immunology, 13(2), 191.

    Google Scholar 

  34. 34.

    Pal, R., Chakraborty, B., Nath, A., Singh, L. M., Ali, M., Rahman, D. S., Ghosh, S. K., Basu, A., Bhattacharya, S., & Baral, R. (2016). Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: an in vitro approach. International Immunopharmacology, 38, 332–341.

    Google Scholar 

  35. 35.

    Repnik, U., & Turk, B. (2010). Lysosomal–mitochondrial cross-talk during cell death. Mitochondrion, 10(6), 662–669.

    Google Scholar 

  36. 36.

    Jaattela, M., Cande, C., & Kroemer, G. (2004). Lysosomes and mitochondria in the commitment to apoptosis: a potential role for cathepsin D and AIF. Cell Death and Differentiation, 11(2), 135–136.

    Google Scholar 

  37. 37.

    Pan, X., Jiang, L., Zhong, L., Geng, C., Jia, L., Liu, S., Guan, H., Yang, G., Yao, X., & Piao, F. (2016). Arsenic induces apoptosis by the lysosomal-mitochondrial pathway in INS-1 cells. Environmental Toxicology, 31(2), 133–141.

    Google Scholar 

  38. 38.

    Kitareewan, S., Sloboda, R. D., & Dmitrovsky, E. (2005). Lysosomes are direct and early targets of trivalent arsenic in acute promyelocytic leukemia (APL). Philadelphia: AACR.

    Google Scholar 

  39. 39.

    Huang, W., Huang, Y., You, Y., Nie, T., & Chen, T. (2017). High-yield synthesis of multifunctional tellurium Nanorods to achieve simultaneous chemo-photothermal combination cancer therapy. Advanced Functional Materials.

  40. 40.

    Sim Choi, H., Woo Kim, J., Cha, Y. N., & Kim, C. (2006). A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. Journal of Immunoassay and Immunochemistry, 27(1), 31–44.

    Google Scholar 

  41. 41.

    Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. The FEBS Journal, 47(3), 469–474.

    Google Scholar 

  42. 42.

    Dolniak, B., Katsoulidis, E., Carayol, N., Altman, J. K., Redig, A. J., Tallman, M. S., Ueda, T., Watanabe-Fukunaga, R., Fukunaga, R., & Platanias, L. C. (2008). Regulation of arsenic trioxide-induced cellular responses by Mnk1 and Mnk2. The Journal of Biological Chemistry, 283(18), 12034–12042.

    Google Scholar 

  43. 43.

    Jadhav, V., Sachar, S., Chandra, S., Bahadur, D., & Bhatt, P. (2015). Synthesis and characterization of arsenic trioxide nanoparticles and their in vitro cytotoxicity studies on mouse fibroblast and prostate cancer cell lines [J]. Journal of Nanoscience and Nanotechnology, 15, 1–7.

    Google Scholar 

  44. 44.

    Sheibley, D. W., & Fowler, M. H. (1966). Infrared spectra of various metal oxides in the region of 2 to 26 microns. Cleveland: National Aeronautics and Space Administration Lewis Research Center.

    Google Scholar 

  45. 45.

    Smith, B. C. (2011). Fundamentals of Fourier transform infrared spectroscopy. Boca Raton: CRC Press.

    Google Scholar 

  46. 46.

    Susi, H., & Byler, D. M. (1983). Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochemical and Biophysical Research Communications, 115(1), 391–397.

    Google Scholar 

  47. 47.

    Herd, H. L., Bartlett, K. T., Gustafson, J. A., McGill, L. D., & Ghandehari, H. (2015). Macrophage silica nanoparticle response is phenotypically dependent. Biomaterials, 53, 574–582.

    Google Scholar 

  48. 48.

    Kuhn, D. A., Vanhecke, D., Michen, B., Blank, F., Gehr, P., Petri-Fink, A., & Rothen-Rutishauser, B. (2014). Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein Journal of Nanotechnology, 5, 1625.

    Google Scholar 

  49. 49.

    Burgoyne, L. (1999). The mechanisms of pyknosis: hypercondensation and death. Experimental Cell Research, 248(1), 214–222.

    Google Scholar 

  50. 50.

    Forkner, C. E., & Scott, T. M. (1931). Arsenic as a therapeutic agent in chronic myelogenous leukemia: preliminary report. Journal of the American Medical Association, 97(1), 3–5.

    Google Scholar 

  51. 51.

    List, A., Beran, M., DiPersio, J., Slack, J., Vey, N., Rosenfeld, C., & Greenberg, P. (2003). Opportunities for Trisenox®(arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia, 17(8), 1499.

    Google Scholar 

  52. 52.

    Niu, C., Yan, H., Yu, T., Sun, H.-P., Liu, J.-X., Li, X.-S., Wu, W., Zhang, F.-Q., Chen, Y., & Zhou, L. (1999). Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood, 94(10), 3315–3324.

    Google Scholar 

  53. 53.

    Shen, Z.-X., Chen, G.-Q., Ni, J.-H., Li, X.-S., Xiong, S.-M., Qiu, Q.-Y., Zhu, J., Tang, W., Sun, G.-L., & Yang, K.-Q. (1997). Use of arsenic trioxide (as 2 O 3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood, 89(9), 3354–3360.

    Google Scholar 

  54. 54.

    Desikan, R., Barlogie, B., Sawyer, J., Ayers, D., Tricot, G., Badros, A., Zangari, M., Munshi, N. C., Anaissie, E., & Spoon, D. (2000). Results of high-dose therapy for 1000 patients with multiple myeloma: durable complete remissions and superior survival in the absence of chromosome 13 abnormalities. Blood, 95(12), 4008–4010.

    Google Scholar 

  55. 55.

    Desai, N., Trieu, V., Yao, Z., Louie, L., Ci, S., Yang, A., Tao, C., De, T., Beals, B., & Dykes, D. (2006). Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clinical Cancer Research, 12(4), 1317–1324.

    Google Scholar 

  56. 56.

    Fritzsche, T., Schnölzer, M., Fiedler, S., Weigand, M., Wiessler, M., & Frei, E. (2004). Isolation and identification of heterogeneous nuclear ribonucleoproteins (hnRNP) from purified plasma membranes of human tumour cell lines as albumin-binding proteins. Biochemical Pharmacology, 67(4), 655–665.

    Google Scholar 

  57. 57.

    Heldin, C.-H. (1995). Dimerization of cell surface receptors in signal transduction. Cell, 80(2), 213–223.

    Google Scholar 

  58. 58.

    Schreiber, A. B., Libermann, T., Lax, I., Yarden, Y., & Schlessinger, J. (1983). Biological role of epidermal growth factor-receptor clustering. Investigation with monoclonal anti-receptor antibodies. The Journal of Biological Chemistry, 258(2), 846–853.

    Google Scholar 

  59. 59.

    Andersson, C., Iresjö, B.-M., & Lundholm, K. (1991). Identification of tissue sites for increased albumin degradation in sarcoma-bearing mice. The Journal of Surgical Research, 50(2), 156–162.

    Google Scholar 

  60. 60.

    Stehle, G., Sinn, H., Wunder, A., Schrenk, H. H., Stewart, J. C. M., Hartung, G., Maier-Borst, W., & Heene, D. L. (1997). Plasma protein (albumin) catabolism by the tumor itself—implications for tumor metabolism and the genesis of cachexia. Critical Reviews in Oncology/Hematology, 26(2), 77–100.

    Google Scholar 

  61. 61.

    Yin, L., Stearns, R., & González-Flecha, B. (2005). Lysosomal and mitochondrial pathways in H2O2-induced apoptosis of alveolar type II cells. Journal of Cellular Biochemistry, 94(3), 433–445.

    Google Scholar 

  62. 62.

    Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94(3), 909–950.

    Google Scholar 

  63. 63.

    Niu, Z., Zhang, W., Gu, X., Zhang, X., Qi, Y., & Zhang, Y. (2016). Mitophagy inhibits proliferation by decreasing cyclooxygenase-2 (COX-2) in arsenic trioxide-treated HepG2 cells. Environmental Toxicology and Pharmacology, 45, 212–221.

    Google Scholar 

  64. 64.

    Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science, 296(5573), 1655–1657.

    Google Scholar 

  65. 65.

    Semenza, G. L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell, 148(3), 399–408.

    Google Scholar 

  66. 66.

    J-w, K., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.

    Google Scholar 

  67. 67.

    Tello, D., Balsa, E., Acosta-Iborra, B., Fuertes-Yebra, E., Elorza, A., Ordóñez, Á., Corral-Escariz, M., Soro, I., López-Bernardo, E., & Perales-Clemente, E. (2011). Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting complex I activity. Cell Metabolism, 14(6), 768–779.

    Google Scholar 

Download references

Funding

We gratefully acknowledge University Grant Commission (UGC), Government of India for funding the study under UGC-Major Research Project grant [Sanction No. MRP-Major-BIOT-2013-38543] and providing UGC-BSR doctoral research fellowship to Biswajit Das; CIF, Indian Institute of Technology, Guwahati, India for FESEM analysis; SAIF, North Eastern Hill University, Shillong, India for TEM analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahuya Sengupta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Synthesis of albumin-coated As2O3 nanoparticles (HSA-ATONPs)

• Uptake and intracellular localization of the HSA-ATONPs in MCF7 cells

• Apoptosis of MCF7 cells by HSA-ATONPs at a lower dose compared to bulk ATO

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, B., Rahaman, H., Ghosh, S.K. et al. Synthesis and Characterization of Arsenic(III) Oxide Nanoparticles as Potent Inhibitors of MCF 7 Cell Proliferation through Proapoptotic Mechanism. BioNanoSci. 10, 420–429 (2020). https://doi.org/10.1007/s12668-020-00726-0

Download citation

Keywords

  • Arsenic trioxide
  • Nanoparticles
  • Cytotoxicity
  • Apoptosis
  • MCF7 cells