Green Synthesis, Characterization, and Investigation Antibacterial Activity of Silver Nanoparticles Using Pistacia atlantica Leaf Extract

Abstract

The present article reports on a simple, economical, and green preparative strategy for synthesis silver nanoparticle with Pistacia atlantica leaf extract as a reductant, stabilizer, and capping agent. The green AgNPs were characterized by ultraviolet-visible (UV-Vis) spectrometer, energy dispersive X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDX), and Fourier transform infrared (FTIR) spectrophotometer. The XRD pattern provided evidence for the formation of face-centered cubic structure with an average size of 17–18 nm. UV-Vis and FTIR were used to identify the biomolecules and capping reagents in the Pistacia atlantica leaf extract that may be responsible for the reduction of silver ions and the stability of the bioreduced nanoparticles. This work proved the capability of using biomaterial towards the synthesis of silver nanoparticle, by adopting the principles of green chemistry. In addition, the antibacterial activity of biologically synthesized nanoparticles was proved against gram-positive (Streptococcus pyogenes and Staphylococcus aureus) and gram-negative (Salmonella paratyphi B, Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa) bacteria.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Allafchian, A. R., Bahramian, H., Jalali, S. A. H., & Ahmadvand, H. (2015). Synthesis, characterization and antibacterial effect of new magnetically core–shell nanocomposites. Journal of Magnetism and Magnetic Materials, 394(2), 318–324.

    Article  Google Scholar 

  2. 2.

    Allafchian, A. R., & Jalali, S. A. H. (2015). Synthesis, characterization and antibacterial effect of poly (acrylonitrile/maleic acid)–silver nanocomposite. Journal of the Taiwan Institute of Chemical Engineers, 57(1), 154–159.

    Article  Google Scholar 

  3. 3.

    Song, J. Y., & S, K. B. (2008). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(2), 79–84.

    MathSciNet  Google Scholar 

  4. 4.

    Aparna, G. S., Subbaiah, K. V., Saigopal, D. V. R., Subba Rao, Y., & Varada Reddy, A. (2014). Efficient and robust bio fabrication of silver nanoparticles by Cassia alata leaf extract and their antimicro-bial activity. Journal of Nanostructure in Chemistry, 82(1), 1–9.

    Google Scholar 

  5. 5.

    Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., & Kalaichelvan, P. T. (2010). Synthesis of silver nanoparticles using Acalyphaindica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76(1), 50–56.

    Article  Google Scholar 

  6. 6.

    Allafchian, A. R., Mirahmadi-Zare, S. Z., Jalali, S. A. H., Hashemi, S. S., & Vahabi, M. R. (2016). Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. Journal of Nanostructure in Chemistry, 6(2), 129–135.

    Article  Google Scholar 

  7. 7.

    Shiraishi, Y., & Toshima, N. (2000). Oxidation of ethylene catalyzed by colloidal dispersions of poly (sodium acrylate)-protected silver nanoclusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 169(1), 59–66.

    Article  Google Scholar 

  8. 8.

    Gurunathan, S., Park, J. H., Han, J. W., & Kim, J. H. (2015). Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. International Journal of Nanomedicine, 29(2), 4203–4222.

    Article  Google Scholar 

  9. 9.

    Li, W. R., Xie, X. B., Shi, Q. S., Zeng, H. Y., Ou-Yang, Y. S., & Chen, Y. B. (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology, 85(4), 1115–1122.

    Article  Google Scholar 

  10. 10.

    Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., & Sainkar, S. R. (2001). Ungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Letters., 1(10), 515–519.

    Article  Google Scholar 

  11. 11.

    Chang, L. T. (1995). Studies on the preparation and properties of conductive polymers. VIII. Use of heat treatment to prepare metallized films from silver chelate of PVA and PAN. Journal of Applied Polymer Science, 55(5), 371–374.

    Article  Google Scholar 

  12. 12.

    Khan, Z., Al-Thabaiti, S. A., Obaid, A. Y., & Al-Youbi, A. O. (2011). Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids and Surfaces B: Biointerfaces, 82(2), 513–517.

    Article  Google Scholar 

  13. 13.

    Liz-Marzan, L. M., & Lado-Tourino, I. (1996). Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir, 12(15), 3585–3589.

    Article  Google Scholar 

  14. 14.

    Navaladian, S., Viswanathan, B., Viswanath, R. P., & Varadarajan, T. K. (2007). Thermal decomposition as route for silver nanoparticles. Nanoscale Research Letters, 2(1), 44–48.

    Article  Google Scholar 

  15. 15.

    Esumi, K., Tano, T., Torigoe, K., & Meguro, K. (1990). Preparation and characterization of biometallic Pd-cu colloids by thermal decomposition of their acetate compounds in organic solvents. Journal of Materials Chemistry A, 2(5), 564–567.

    Article  Google Scholar 

  16. 16.

    Pileni, M. P. (2000). Fabrication and physical properties of self-organized silver nanocrystals. Pure and Applied Chemistry, 72(1), 53–65.

    Article  Google Scholar 

  17. 17.

    Sun, Y. P., Atorngitjawat, P., & Meziani, M. J. (2001). Preparation of silver nanoparticles via rapid expansion of water in carbon dioxide microemulsion into reductant solution. Langmuir, 17(19), 5707–5710.

    Article  Google Scholar 

  18. 18.

    Henglein, A. (1998). Colloidal silver nanoparticles: Photochemical preparation and interaction with O2, CCl4, and some metal ions. Journal of Materials Chemistry, 10(1), 444–446.

    Article  Google Scholar 

  19. 19.

    Fatimah, I. (2016). Green synthesis of silver nanoparticles using extrac of Parkia speciosa Hassk pods assisted by microwave irradiation. Journal of Advanced Research, 7(6), 961–969.

    Article  Google Scholar 

  20. 20.

    Kahrilas, G. A., Haggren, W., Read, R. L., Wally, L. M., & Fredrick, S. J. (2014). Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustainable Chemistry & Engineering, 2(4), 590–598.

    Article  Google Scholar 

  21. 21.

    Yin, H. B., Yamamoto, T., Wada, Y., & Yanagida, S. (2004). Large scale and size controlled synthesis of silver nanoparticles under microwave irradiation. Materials Chemistry and Physics, 83(1), 66–70.

    Article  Google Scholar 

  22. 22.

    Raveendran, P., Fu, J., & Wallen, S. L. (2006). A simple and “green” method for the synthesis of au, ag, and au-ag alloy nanoparticles. Green Chemistry, 8(1), 34–38.

    Article  Google Scholar 

  23. 23.

    Armendariz, V., Gardea-Torresdey, J. L., Jose Yacaman, M., Gonzalez, J., Herrera, I., & Parsons, J. G. (2002). Gold nanoparticle formation by oat and wheat biomasses. Proceedings of Conference on Application of Waste Remediation Technologies to Agricultural Contamination of. Water Resources, 2(1), 397–401.

    Google Scholar 

  24. 24.

    Kharissova, O. V., Dias, H. V., Kharisov, B. I., Perez, B. O., & Perez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in Biotechnology, 31(4), 240–248.

    Article  Google Scholar 

  25. 25.

    Joseph, S., & Mathew, B. (2015). Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. Journal of Molecular Liquids, 204(2), 184–191.

    Article  Google Scholar 

  26. 26.

    Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States, 96(24), 13611–13614.

    Article  Google Scholar 

  27. 27.

    Konishi, Y., & Uruga, T. B. (2007). Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. Journal of Biotechnology, 128(3), 648–653.

    Article  Google Scholar 

  28. 28.

    Willner, I., Baron, R., & Willner, B. (2006). Growing metal nanoparticles by enzymes. Advanced Materials, 18(9), 1109–1120.

    Article  Google Scholar 

  29. 29.

    Siddiqui, M., Redhwi, H., Achilias, D., Kosmidou, E., Vakalopoulou, E., & Ioannidou, M. (2018). Green synthesis of silver nanoparticles and study of their antimicrobial properties. Journal of Polymers and the Environment, 26(2), 423–433.

    Article  Google Scholar 

  30. 30.

    Ahmad, N., Sharma, S., Singh, V. N., Shamsi, S. F., Fatma, A., & Mehta, B. R. (2011). Biosynthesis of silver nanoparticles from Desmodium triflorum: A novel approach towards weed utilization. Biotechnology Research International, 4, 1),1–1),8.

    Google Scholar 

  31. 31.

    Velusamy, P., Das, J., & Pachaiappan, R. (2015). Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Industrial Crops and Products, 66(2), 103–109.

    Article  Google Scholar 

  32. 32.

    Fang, P., Yanyan, H., Zhiguang, Y., Hao, Q., & Jinsong, R. (2018). Nucleotide-based assemblies for green synthesis of silver nanoparticles with controlled localized surface plasmon resonances and their applications. ACS Applied Materials & Interfaces, 10(12), 9929–9937.

    Article  Google Scholar 

  33. 33.

    Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of au, ag, and bimetallic au core-ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496–502.

    Article  Google Scholar 

  34. 34.

    Veisi, H., Faraji, A. R., Hemmati, S., & Gil, A. (2015). Green synthesis of palladium nanoparticles using Pistacia atlantica kurdica gum and their catalytic performance in Mizoroki–heck and Suzuki–Miyaura coupling reactions in aqueous solutions. Applied Organometallic Chemistry, 29(8), 517–523.

    Article  Google Scholar 

  35. 35.

    Bozorgi, M., Memariani, Z., Mobli, M., Salehi Surmaghi, M. H., Shams-Ardekani, M. R., & Rahimi, R. (2013). Five Pistacia species (P. Vera, P. Atlantica, P. Terebinthus, P. Khinjuk,and P. Lentiscus): A review of their traditional uses, phytochemistry, and pharmacology. The Scientific World Journal, 2013(5), 1–33.

    Article  Google Scholar 

  36. 36.

    Samavati, V., & Adeli, M. (2014). Isolation and characterization of hydrophobic compounds from carbohydrate matrix of Pistacia atlantica. Carbohydrate Polymers, 101(3), 890–896.

    Article  Google Scholar 

  37. 37.

    Ahmed, Z. B., Yousfi, M., Viaene, J., & Dejaegher, B. (2016). Antioxidant activities of Pistacia atlantica extracts modeled as a function of chromatographic fingerprints in order to identify antioxidant markers. Microchemical Journal, 128(6), 208–217.

    Article  Google Scholar 

  38. 38.

    Gourine, N., Yousfi, M., Bombarda, I., Nadjemi, B., Stocker, P., & Gaydou, E. M. (2010). Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Industrial Crops and Products, 31(2), 203–208.

    Article  Google Scholar 

  39. 39.

    Viswadevarayalu, A., Venkata, R., Venu, G., Sumalatha, J., & Adinarayana, R. (2015). Facile green synthesis of silver nanoparticles using Limonia Acidissima leaf extract and its antibacterial activity. BioNanoScience, 5(2), 433–444.

    Google Scholar 

  40. 40.

    Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28.

    Article  Google Scholar 

  41. 41.

    Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific Journal of Tropical Biomedicine, 2(7), 574–580.

    Article  Google Scholar 

  42. 42.

    Castellanos Gil, E., Colarte, A. I., Ghzaoui, A. E., Durand, D., Delarbre, J. L., & Bataille, B. (2008). A sugar cane native dextran as an innovative functional excipient for the development of pharmaceutical tablets. European Journal of Pharmaceutics and Biopharmaceutic, 68(2), 319–329.

    Article  Google Scholar 

  43. 43.

    Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources Bioprocessing, 1(4), 1–10.

    Google Scholar 

  44. 44.

    Lin, L., Wang, W., Huang, J., Li, Q., Sun, D., & Yang, X. (2010). Nature factory of silver nanowires: Plantmediated synthesis using broth of Cassia fistula leaf. Chemical Engineering Journal, 162(2), 852–858.

    Article  Google Scholar 

  45. 45.

    Zayed, M. F., Eisa, W. H., & Shabaka, A. A. (2012). Malva parviflora extract assisted green synthesis of silver nanoparticles. Spectrochim Acta Part A: Mol. Biomol Spectrosc, 98(7), 423–428.

    Article  Google Scholar 

  46. 46.

    Roy, S., & Das, T. K. P. (2015). Lant mediated green synthesis of silver nanoparticles – A review. International Journal of Plant Biology & Research, 3(3), 1044–1055.

    Google Scholar 

  47. 47.

    Koseoglu, Y., Alan, F., Tan, M., Yilgin, R., & Ozturk, M. (2012). Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceramics International, 38(5), 3625–3634.

    Article  Google Scholar 

  48. 48.

    Partha, P. G., Hanif, A. C., & Vijayanand, S. M. (2013). Sonochemical synthesis and characterization of manganese ferrite nanoparticles. Industrial and Engineering Chemistry Research, 52(50), 17848–17855.

    Article  Google Scholar 

  49. 49.

    Cullity, B. D. (1978). Elements of x-ray diffraction (2nd ed.). Philippines: Addison-Wesley.

    Google Scholar 

  50. 50.

    Prabhu, Y. T., Venkateswara Rao, K., Kumari, B. S., Kumar, V. S., & Pavani, T. (2015). Synthesis of Fe3O4 nanoparticles and its antibacterial application. International Nano Letters, 5(2), 85–92.

    Article  Google Scholar 

  51. 51.

    He, Y., Ingudam, S., Reed, S., Gehring, A., & Strobaugh, T. (2016). Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. Journal of Nanobiotechnology, 14(1), 54–60.

    Article  Google Scholar 

  52. 52.

    Yousefi, A., Seyyed Ebrahimi, S. A., Seyfoori, A., & Mahmoodzadeh Hossein, H. (2017). Maghemite nanorods and nanospheres: Synthesis and comparative physical and biological properties. BioNanoScience, 8(3), 95–104.

    Google Scholar 

  53. 53.

    Lee, H. L., Molla, M. N., Cantor, C. R., & Collins, J. J. (2010). Bacterial charity work leads to population-wide resistance. Nature, 467(7611), 82–86.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank research center at Soran University for taken the SEM, FTIR, and UV-Vis spectra. Also Faculty of Biology for assistance with antimicrobial tests and for the constructive discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roonak Golabiazar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golabiazar, R., Othman, K.I., Khalid, K.M. et al. Green Synthesis, Characterization, and Investigation Antibacterial Activity of Silver Nanoparticles Using Pistacia atlantica Leaf Extract. BioNanoSci. 9, 323–333 (2019). https://doi.org/10.1007/s12668-019-0606-z

Download citation

Keywords

  • Green synthesis
  • Silver nanoparticles
  • Antibactrial activity
  • Gram-positive bacteria
  • Gram negative bacteria
  • Plant extract
  • Pistacia atlantica
  • Capping agent