Abstract
The article presents results of the microbiological investigation conducted jointly by the Russian State Space Corporation ROSCOSMOS and the Russian Academy of Sciences. This study was aimed on detecting viable microorganisms on the outer surface of the International Space Station the during astronauts’ extravehicular activities. A specific environment has developed around the International Space Station over the extended period of operation, which could possibly create conditions for the preservation of biological structures. To investigate this possibility, space dust was sampled from the surfaces of the Russian segment of the International Space Station by the TEST sampler during several spacewalk sessions. Microorganism culturing, detection, and subsequent microbial identification were carried out using both microbiological and molecular genetic methods. During the course of research investigation, viable spores of the microorganisms were periodically detected in the samples taken on the outer surface of the International Space Station. Among samples taken in 2016, a consortium of non-spore-forming bacteria was found on the outside of the porthole, which consisted of Agrococcus jenensis, Skermanella aerolata, Deinococcus aerolatus, and Staphylococcus hominis. The results of the space experiment TEST demonstrate the possibility of obtaining unique data on the preservation of the viable microorganisms in the natural conditions of open space at an altitude of 400 km from the Earth.
Similar content being viewed by others
References
Lane, D. J. (1991). 16S/23S sequencing. In E. A. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). Chichester: John Wiley & Sons, Ltd..
Wang, J., Nesengani, L. T., Gong, Y., Yang, Y., & Lu, W. (2018). 16S rRNA gene sequencing reveals effects of photoperiod on cecal microbiota of broiler roosters. Peer Journal, 6, e4390.
Usyk, M., Zolnik, C. P., Patel, H., Levi, M. H., Burk, R. D. (2017). Novel ITS1 fungal primers for characterization of the mycobiome. mSphere, 2(6).
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10, 421.
Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267.
Checinska, I., Probst, J., Vaishampayan, I., White, J. R., Kumar, D., Stepanov, V. G., Fox, G. E., Nilsson, H. R., Pierson, D. L., Perry, J., & Venkateswaran, K. (2015). Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome, 3, 50.
Groth, I., Schumann, P., Weiss, N., Martin, K., & Rainey, F. A. (1996). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. International Journal of Systematic Bacteriology, 46(1), 234–239.
Yuan, M., Zhang, W., Dai, S., Wu, J., Wang, Y., Tao, T., Chen, M., & Lin, M. (2009). Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. International Journal of Systematic and Evolutionary Microbiology, 59(Pt), 1513–1517.
Asker, D., Awad, T. S., McLandsborough, L., Beppu, T., & Ueda, K. (2011). Deinococcus depolymerans sp. nov., a gamma- and UV-radiation-resistant bacterium, isolated from a naturally radioactive site. International Journal of Systematic and Evolutionary Microbiology, 61(Pt 6), 1448–1453.
Yoo, S. H., Weon, H. Y., Kim, S. J., Kim, Y. S., Kim, B. Y., & Kwon, S. W. (2010). Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples. International Journal of Systematic and Evolutionary Microbiology, 60(Pt 5), 1191–1195.
Kämpfer, P., Lodders, N., Huber, B., Falsen, E., & Busse, H. J. (2008). Deinococcus aquatilis sp. nov., isolated from water. International Journal of Systematic and Evolutionary Microbiology, 58(Pt 12), 2803–2806.
Lagier, J. C., Armougom, F., Million, M., Hugon, P., Pagnier, I., et al. (2012). Microbial culturomics: paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection, 18(12), 1185–1193.
Srinivasan, S., Lee, J. J., Lim, S., Joe, M., & Kim, M. K. (2012). Deinococcushumi sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 62(Pt 12), 2844–2850.
Lee, J. J., Lee, H. J., Jang, G. S., Yu, J. M., Cha, J. Y., Kim, S. J., Lee, E. B., & Kim, M. K. (2013). Deinococcus swuensis sp. nov., a gamma-radiation-resistant bacterium isolated from soil. Journal of Microbiology, 51(3), 305–311.
Krisko, A., Radman, M. (2013). Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harbor Perspectives in Biology, 5(7). Mc Keown D., Corbin W.E. Space Simulation Conference 5-th −1970, №7, p.113/.
Vaishampayan, P., Roberts, A. H., Augustus, A., Pukall, R., Schumann, P., Schwendner, P., Mayilraj, S., Salmassi, T., & Venkateswaran, K. (2014). Deinococcus phoenicis sp. nov., an extreme ionizing radiation resistant bacterium isolated from the Phoenix Lander assembly facility. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 10), 3441–3446.
Moissl, C., Osman, S., La Duc, M. T., Dekas, A., Brodie, E., DeSantis, T., & Venkateswaran, K. (2007). Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiology Ecology, 61(3), 509–521.
Ichijo, Т., Yamaguchi, N., & Nasu, M. (2015 (Review)). Bacterial Monitoring in the International Space Station –“Kibo”. Journal of Disaster Research, 10(6), 1035.
Ichijo, T., Yamaguchi, N., Tanigaki, F., Shirakawa, M., & Nasu, M. (2016). Four-year bacterial monitoring in the International Space Station – Japanese Experiment Module “Kibo” with culture-independent approach. NPJ Microgravity, 2, 16007.
Skerman, V. B. D., Sly, L. I., & Williamson, M.-L. (1983). Conglomeromonaslargomobilis gen. nov., sp. nov., a sodium-sensitive, mixed- flagellated organism from fresh waters. International Journal of Systematic Bacteriology, 33, 300–308.
Zhu, W., Huang, J., Li, M., Li, X., & Wang, G. (2014). Genomic analysis of Skermanella stibiiresistens type strain SB22 (T.). Standards in Genomic Sciences, 9(3), 1211–1220.
Weon, H. Y., Kim, B. Y., Hong, S. B., Joa, J. H., Nam, S. S., Lee, K. H., & Kwon, S. W. (2007). Skermanella aerolata sp. nov., isolated from air, and emended description of the genus Skermanella. International Journal of Systematic and Evolutionary Microbiology, 57, 1539–1542.
Funding
This study was supported by the Central Research Institute of Engineering and Russian State Space Corporation ROSCOSMOS (contract №47702388027160000510/17-12-147/(32-1301-2016)-1301/67-2017).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of Interest
The authors declare that they have no conflicts of interest.
Research Involving Human Participants or Animals
None.
Informed Consent
None.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Deshevaya, Е.А., Shubralova, E.V., Fialkina, S.V. et al. Microbiological Investigation of the Space Dust Collected from the External Surfaces of the International Space Station. BioNanoSci. 10, 81–88 (2020). https://doi.org/10.1007/s12668-019-00712-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12668-019-00712-1